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Introduction

I In real world use cases

non-quantitative factors are involved.

black-box classifiers lack interepretability.

I Neighbor-based classification:

Things that appear similar are likely similar.

Provides a natural reasoning for classifier decisions.

I Neighbor-based methods can

justify the decision process.

provide similar examples to a given query.
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Approach

With neighbor-based a query is

I not constant-time like neural network classifier.

I linear in the size of training dataset in worst-case.

Figure: Use a cascade of neural network and a neighbor-based classifier.

Notation:

I [K] = {1, . . . ,K} for any positive integer K.

I D = {(xn, yn) | xn ∈ RD, yn ∈ [C], n ∈ [N ]} is a given dataset.
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Boundary tree (BT) algorithm1

Figure: A BT with data points belonging to 2 classes.

I First, BT is built using (xi, yi) ∈ D.

I Nodes represent (xi, yi) - data, label pairs.

I Offers approximate nearest neighbor search (ANN).

I Given x, traverse BT searching for ANN in local neighborhoods.

I Local neighborhood: A node and its children.

I Use ‖·‖2, the L2 norm to measure distances.

1Charles Mathy et al. “The Boundary Forest Algorithm for Online Supervised and Unsupervised
Learning”. In: AAAI Conf. Artificial Intelligence. 2015.
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Differentiable boundary trees2 (DBTs)

I Assert a neural network for fθ : RD → Rm.

I Build a BT with fθ(·) transformed data.

I Nodes represent (fθ(xi), yi) data, label pairs.

I Minimize training loss Ldbt w.r.t. θ using gradient descent.

I Tree traversal is not a differentiable operation.

I (Minimize Ldbt over θ with BT fixed) ←→ (Re-build BT with θ fixed)

2Daniel Zoran, Balaji Lakshminarayanan, and Charles Blundell. “Learning Deep Nearest
Neighbor Representations Using Differentiable Boundary Trees”. In: arXiv preprint
arXiv:1702.08833 (2017).
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Issues of DBT algorithm

(1) Only local neighborhood contributes to training.

Figure: Dark red point is the closest to a training point x. DBT training only
considers the points below blue curve. Others do not contribute to training.

(2) Batch-implementation of DBT algorithm is hard.

Modern software/hardware tools rely on batch-implementation.

Tree traversal cannot be implemented as a batch operation.

I Is using a tree in training (not in testing/deploying) necessary?

Size of BT is limited by number of training points.

Number of nodes in the tree is already small (typically < 100).
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Proposing Boundary Sets and Differentiable Boundary Sets

Boundary set (BS):

I Follow boundary tree algorithm.

I Accumulate data in a set, rather than a tree.

Differentiable boundary set (DBS):

I All data points in the set contribute in optimization.

I Efficient batch-implementation is possible with existing tools.
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Experiments

In each dataset,

I 10 image categories.

I 28× 28 = 784 pixel
images.

I 60,000 training examples.

I 10,000 test examples.

fθ(·) model architecture for DBT and DBS:

I 784
relu−−→ 400

relu−−→ 400
identity−−−−→ 20

Comparison with vanilla neural network (VNet) classifier.

I 784
relu−−→ 400

relu−−→ 400
identity−−−−→ 20

softmax−−−−→ 10
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DBS is much faster than DBT
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Figure: Experimental results with Fashion-MNIST training data.

(a) Comparison of training time for DBT and DBS.

(b) Learning 2-d representations by setting output dimension of fθ(·) = 2.
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Comparing test errors

Table: Test error comparison of DBT, DBS and VNet.

Model
Digit-MNIST Fashion-MNIST

Test error % # of nodes Test error % # of nodes

DBT 2.23 220 14.2 505

DBS 1.52 29 10.3 26

VNet 1.48 - 9.8 -

I # of nodes: Number of data points stored in the BT.

I DBS is the best performing in neighbor-based category.
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Conclusion and future work

Proposed an algorithm that

I learns representations efficiently for neighbor-based classification.

I improves the accuracy and data representability of DBT.

I is easy to implement on modern machine learning tools.

Open for exploration:

I An adaptive classifier without the need for re-training.

I Two-stage training process that preserves privacy.
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Thank you.

Questions?
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Neighbor-based classification

Exact nearest neighbors:

I k-nearest neighbors

I Computational complexity: O(ND)

I Logistic regression: O(1)

O(·) is the big O notation for computational complexity.

Approximate nearest neighbors (ANNs):

I Tree-based: Organize data in a tree structure.

I Hashing-based: Computes low dimensional hash values.

I Computational complexity: Sub-linear

15 / 23



Neighbor-based classification

Exact nearest neighbors:

I k-nearest neighbors

I Computational complexity: O(ND)

I Logistic regression: O(1)

O(·) is the big O notation for computational complexity.

Approximate nearest neighbors (ANNs):

I Tree-based: Organize data in a tree structure.

I Hashing-based: Computes low dimensional hash values.

I Computational complexity: Sub-linear

15 / 23



Hashing-based methods
Locality-sensitive hashing4

Locality Sensitive Hashing 

Benjamin Van Durme & Ashwin Lall ACL 2010 
Figure: Intuition behind locality sensitive hashing3.

3Van Durme and Lall, “Online Generation of Locality Sensitive Hash Signatures”.
4Aristides Gionis, P. Indyk, and R. Motwani. “Similarity search in high dimensions via hashing”.

In: Vldb. 1999.
16 / 23



Hashing-based methods
Locality-sensitive hashing4

Locality Sensitive Hashing 

Benjamin Van Durme & Ashwin Lall ACL 2010 
Figure: Intuition behind locality sensitive hashing3.

3Van Durme and Lall, “Online Generation of Locality Sensitive Hash Signatures”.
4Aristides Gionis, P. Indyk, and R. Motwani. “Similarity search in high dimensions via hashing”.

In: Vldb. 1999.
16 / 23



Hashing-based methods
Locality-sensitive hashing4

Locality Sensitive Hashing 

Benjamin Van Durme & Ashwin Lall ACL 2010 
Figure: Intuition behind locality sensitive hashing3.

3Van Durme and Lall, “Online Generation of Locality Sensitive Hash Signatures”.
4Aristides Gionis, P. Indyk, and R. Motwani. “Similarity search in high dimensions via hashing”.

In: Vldb. 1999.
16 / 23



Hashing-based methods
Locality-sensitive hashing4

Locality Sensitive Hashing 

Benjamin Van Durme & Ashwin Lall ACL 2010 
Figure: Intuition behind locality sensitive hashing3.

3Van Durme and Lall, “Online Generation of Locality Sensitive Hash Signatures”.
4Aristides Gionis, P. Indyk, and R. Motwani. “Similarity search in high dimensions via hashing”.

In: Vldb. 1999.
16 / 23



Building and querying a BT

I Local neighborhood: A node and its children.

I Querying BT for the ANN of x:
1. Traverse BT, searching for ANN in local neighborhoods.

I Training BT with a new data point x:
1. Traverse BT, searching for ANN in local neighborhoods.
2. Add as a child only if the ANN is of a different class.

(Hence ‘Boundary tree’)
Differentiable Boundary Trees

root rootroot root

query

root

Figure 1. Boundary trees are built in an online manner, sample by sample. From left to right: Given the current tree (depicted in the left
image) we start with the root node. For each query we recursively traverse the tree, choosing the locally closest node to the query node at
each step. Once traversal stops we use the final node’s class to make the prediction (middle image). If the prediction is wrong (as it is in
this example) we add the query node as a child to the final node, resulting in a new tree (depicted in the right image). Otherwise the query
node is discarded. Edges in the tree cross class boundaries by definition and samples will tend to reside close to the boundaries, hence the
name ”Boundary Tree”.

building the output so we get softer class predictions. We
remove the last transition from path∗ to obtain path†. The
final class log probabilities from the tree given the query
node is:

log p(c|y) =
∑

xi→xj∈path†|y

log p(xi → xj |y)

+ log
∑

xk∈sibling(xfinal∗ )

p(parent(xk)→ xk|y)c(xk) (5)

where sibling(xi) are all the nodes sharing a parent with
node xi and the node xi itself (because the algorithm may
stop at a non-leaf node), c(xi) is an indicator function for
the class associated with node xi (a “one hot” encoding
vector) and xfinal∗ is the final node in the greedy path. We
normalize the class probabilities at the output to obtain a
proper distribution. See Figure 2 for a visualization of the
different elements.

Now, instead of using the samples in their raw representa-
tion, we can transform them using a deep neural net fθ(x)
(the transform) such that we can learn a better representation
of the data. This yields the following log class probabilities:

log p(c|fθ(y)) =
∑

xi→xj∈path†|fθ(y)

log p (fθ(xi)→ fθ(xj)|fθ(y)) +

log
∑

xk∈sibling(xfinal∗ )

p(parent(fθ(xk))→ fθ(xk)|fθ(y))c(xk) (6)

Plugging Equation 6 into a loss function (we use cross-
entropy loss but other choices are possible) we can perform
back-propagation in order to learn the parameters θ of the
transform.

All of these calculations assume that the tree structure re-
mains fixed – see Section 2.4 of how we handle this require-
ment in practice.

root

final*

transition 1

transition 2

transition 3

final node
neighborhood

query

Figure 2. Visualization of the different neighborhoods and transi-
tions involved in the construction of the cost function in Equation
6. The tree is presented in an arbitrary 2D space here (for visual-
ization). Given the query node we greedily traverse the tree down
path∗ (marked in red) after transforming all samples through fθ .
The probability of each transition is calculated up until the final
node’s neighborhood. Here we aggregate the nodes’ class labels,
weighted by their respective transition probability, to build the
class prediction output. See Figure 3 for a visualization of the
associated neural net which is used to compute the cost function.

2.3. Building the neural net

For each query point, we need to dynamically build a neural
network which corresponds to the chosen path in the tree, get
its class predictions and loss and then calculate its gradient
w.r.t the parameters of the transform fθ. Figure 3 depicts
the structure of the network for an arbitrary path.

One thing to note is that each query point results in a differ-
ent network being built, but the parameters of the transform
fθ are shared throughout the process.

a
b

c

d

new

Figure: A BT with 2-d data belonging to 2 classes. New data point x shown in blue.
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Probabilistic model for DBT traversal

I (xr, yr) ∈ D: training point

I p(i): parent node index of node-i

I W(i): index set of siblings of node-i

I V: indexes in traversal path

I s: index of final node

Differentiable Boundary Trees

root root

query

root

query

root

query

root

Figure 1. Boundary trees are built in an online manner, sample by sample. From left to right: Given the current tree (depicted in the left
image) we start with the root node. For each query we recursively traverse the tree, choosing the locally closest node to the query node at
each step. Once traversal stops we use the final node’s class to make the prediction (middle image). If the prediction is wrong (as it is in
this example) we add the query node as a child to the final node, resulting in a new tree (depicted in the right image). Otherwise the query
node is discarded. Edges in the tree cross class boundaries by definition and samples will tend to reside close to the boundaries, hence the
name ”Boundary Tree”.
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2.3. Building the neural net

For each query point, we need to dynamically build a neural
network which corresponds to the chosen path in the tree, get
its class predictions and loss and then calculate its gradient
w.r.t the parameters of the transform fθ. Figure 3 depicts
the structure of the network for an arbitrary path.

One thing to note is that each query point results in a differ-
ent network being built, but the parameters of the transform
fθ are shared throughout the process.

query
training point

log Pr∗(yr = c|xr) =

[ ∑
i∈V\s

log Pr(p(i)→ i|r)

]

+ log

[ ∑
i∈W(s)∪{s}

Pr(p(i)→ i|r)1[yi = c]

]
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Gradient descent with DBTs

I Unnormalized log soft-probabilities

log Pr∗(yr = c|xr) =

[ ∑
i∈V\s

log Pr(p(i)→ i|r)

]

+ log

[ ∑
i∈W(s)∪{s}

Pr(p(i)→ i|r)1[yi = c]

]

I Normalized soft-probabilities

Pr(yr = c|xr) =
Pr∗(yr = c|xr)∑

c′∈[C] Pr∗(yr = c′|xr)

I Cross entropy loss

Ldbt = −
∑
c∈[C]

1[yr = c] log Pr(yr = c|xr)

I Minimize Ldbt with BT fixed ←→ Re-build BT with θ fixed.

I Use final DBT classifier at the test time.
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Effectiveness of using the points near boundary
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Figure: New training data point
⊗

, and existing data points in the BS.
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Implementing fθ(·) with neural networks

Feed-forward neural network comprising of L-layers.

I x(0): input vector

I W (l) and b(l) are learnable variables

I Φ(l): activation function of l-th layer

I l-th layer output (1 ≤ l ≤ L), x(l) = Φ(l)(W (l)x(l−1) + b(l))

I Parameter set θ = {W (l),b(l)}1≤l≤L

fθ(·) : RD → Rm is implemented with

I Φ(L) as the identity function.

I Φ(l) = relu(·) = max(0, ·) for 1 ≤ l < L.
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DBS algorithm

Algorithm 1: DBS training algorithm

input: D, Nb, σ
randomly initialize θ, parameters of fθ(·);
while not reached maximum number of epochs do

shuffle elements and partition D to obtain subsets of size (Nb + 1);
foreach subset D̄ do
U ← {(fθ(xn), yn) | (xn, yn) ∈ D̄};
Ub ← first Nb elements of U ;
S ← boundary set computed using elements of Ub;
(fθ(xr), yr)← last element of U ;
d← row vector consisting Euclidean distances between each data

point in S and xr;

w← softmax function applied on −d
σ

i.e.,

w(i) = exp(−d(i)/σ)∑
j∈[|S|]

exp(−d(j)/σ)
for i ∈ [|S|];

Y ← |S| × C matrix where rows are the one-hot label encodings of
elements of S;

ŷ← wY where ŷ(c) = Pr(yr = c|xr,S, θ) for c ∈ [C];
Ldbs ← cross-entropy loss calculated with ŷ and yr;
Compute ∇θLdbs and take one step to minimize Ldbs;

end
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Model architecture of fθ(·)

Differentiable boundary trees (DBT) and differentiable boundary sets (DBS)

I fθ(·) : 784
relu−−→ 400

relu−−→ 400
identity−−−−→ 20

In DBT, compute gradients by

I DBT-v1: only considering the new training data point.

I DBT-v2: considering new training data point and existing points in BT.

Comparison with vanilla neural network (VNet) classifier.

I 784
relu−−→ 400

relu−−→ 400
identity−−−−→ 20

softmax−−−−→ 10
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