Efficient learning of neighbor representations for boundary trees and forests

Tharindu Adikari, Stark C. Draper

Department of Electrical and Computer Engineering University of Toronto

CISS, 2019

Introduction

In real world use cases

non-quantitative factors are involved.

black-box classifiers lack interepretability.

Introduction

In real world use cases

non-quantitative factors are involved.

black-box classifiers lack interepretability.

Neighbor-based classification:

Things that appear similar are likely similar.

Provides a natural reasoning for classifier decisions.

Neighbor-based methods can

justify the decision process.

provide similar examples to a given query.

Approach

With neighbor-based a query is

- not constant-time like neural network classifier.
- Inear in the size of training dataset in worst-case.

Figure: Use a cascade of neural network and a neighbor-based classifier.

Approach

With neighbor-based a query is

- not constant-time like neural network classifier.
- Inear in the size of training dataset in worst-case.

Figure: Use a cascade of neural network and a neighbor-based classifier.

Approach

With neighbor-based a query is

- not constant-time like neural network classifier.
- Inear in the size of training dataset in worst-case.

Figure: Use a cascade of neural network and a neighbor-based classifier.

Notation:

▶
$$[K] = \{1, ..., K\}$$
 for any positive integer K.
▶ $\mathcal{D} = \{(\mathbf{x}_n, y_n) \mid \mathbf{x}_n \in \mathbb{R}^D, y_n \in [C], n \in [N]\}$ is a given dataset.

Boundary tree (BT) algorithm¹

Figure: A BT with data points belonging to 2 classes.

- First, BT is built using $(\mathbf{x}_i, y_i) \in \mathcal{D}$.
- ▶ Nodes represent (\mathbf{x}_i, y_i) data, label pairs.
- Offers approximate nearest neighbor search (ANN).

¹Charles Mathy et al. "The Boundary Forest Algorithm for Online Supervised and Unsupervised Learning". In: AAAI Conf. Artificial Intelligence. 2015.

Boundary tree (BT) algorithm¹

Figure: A BT with data points belonging to 2 classes.

- First, BT is built using $(\mathbf{x}_i, y_i) \in \mathcal{D}$.
- Nodes represent (\mathbf{x}_i, y_i) data, label pairs.
- Offers approximate nearest neighbor search (ANN).
- ▶ Given x, traverse BT searching for ANN in local neighborhoods.
- Local neighborhood: A node and its children.
- Use $\|\cdot\|_2$, the L_2 norm to measure distances.

¹Charles Mathy et al. "The Boundary Forest Algorithm for Online Supervised and Unsupervised Learning". In: AAAI Conf. Artificial Intelligence. 2015.

Differentiable boundary trees² (DBTs)

- Assert a neural network for $f_{\theta} : \mathbb{R}^D \to \mathbb{R}^m$.
- Build a BT with $f_{\theta}(\cdot)$ transformed data.
- ▶ Nodes represent $(f_{\theta}(\mathbf{x}_i), y_i)$ data, label pairs.

²Daniel Zoran, Balaji Lakshminarayanan, and Charles Blundell. "Learning Deep Nearest Neighbor Representations Using Differentiable Boundary Trees". In: *arXiv preprint arXiv:1702.08833* (2017).

Differentiable boundary trees² (DBTs)

- Assert a neural network for $f_{\theta} : \mathbb{R}^D \to \mathbb{R}^m$.
- Build a BT with $f_{\theta}(\cdot)$ transformed data.
- ▶ Nodes represent $(f_{\theta}(\mathbf{x}_i), y_i)$ data, label pairs.

- Minimize training loss \mathcal{L}_{dbt} w.r.t. θ using gradient descent.
- Tree traversal is not a differentiable operation.
- (Minimize \mathcal{L}_{dbt} over θ with BT fixed) \longleftrightarrow (Re-build BT with θ fixed)

²Daniel Zoran, Balaji Lakshminarayanan, and Charles Blundell. "Learning Deep Nearest Neighbor Representations Using Differentiable Boundary Trees". In: *arXiv preprint arXiv:1702.08833* (2017).

Issues of DBT algorithm

(1) Only local neighborhood contributes to training.

Figure: Dark red point is the closest to a training point \mathbf{x} . DBT training only considers the points below blue curve. Others do not contribute to training.

Issues of DBT algorithm

(1) Only local neighborhood contributes to training.

Figure: Dark red point is the closest to a training point \mathbf{x} . DBT training only considers the points below blue curve. Others do not contribute to training.

(2) Batch-implementation of DBT algorithm is hard.

Modern software/hardware tools rely on batch-implementation. Tree traversal cannot be implemented as a batch operation.

Is using a tree in training (not in testing/deploying) necessary?
Size of BT is limited by number of training points.
Number of nodes in the tree is already small (typically < 100).

Proposing Boundary Sets and Differentiable Boundary Sets

Boundary set (BS):

- Follow boundary tree algorithm.
- Accumulate data in a **set**, rather than a tree.

Differentiable boundary set (DBS):

- All data points in the **set** contribute in optimization.
- Efficient **batch-implementation** is possible with existing tools.

Experiments

In each dataset,

- 10 image categories.
- ▶ 28 × 28 = 784 pixel images.
- 60,000 training examples.
- 10,000 test examples.

 $f_{\theta}(\cdot)$ model architecture for DBT and DBS:

 $\blacktriangleright 784 \xrightarrow{\text{relu}} 400 \xrightarrow{\text{relu}} 400 \xrightarrow{\text{identity}} 20$

Comparison with vanilla neural network (VNet) classifier.

 $\blacktriangleright 784 \xrightarrow{\text{relu}} 400 \xrightarrow{\text{relu}} 400 \xrightarrow{\text{identity}} 20 \xrightarrow{\text{softmax}} 10$

DBS is much faster than DBT

Figure: Experimental results with Fashion-MNIST training data.

(a) Comparison of training time for DBT and DBS. (b) Learning 2-d representations by setting output dimension of $f_{\theta}(\cdot) = 2$.

Model	Digit-MNIST		Fashion-MNIST	
	Test error %	# of nodes	Test error %	# of nodes
DBT	2.23	220	14.2	505
DBS	1.52	29	10.3	26
VNet	1.48	-	9.8	-

Table: Test error comparison of DBT, DBS and VNet.

- # of nodes: Number of data points stored in the BT.
- DBS is the best performing in neighbor-based category.

Conclusion and future work

Proposed an algorithm that

- learns representations efficiently for neighbor-based classification.
- improves the accuracy and data representability of DBT.
- is easy to implement on modern machine learning tools.

Open for exploration:

- An adaptive classifier without the need for re-training.
- Two-stage training process that preserves privacy.

Thank you.

Questions?

References

Mathy, Charles et al. "The Boundary Forest Algorithm for Online Supervised and Unsupervised Learning". In: AAAI Conf. Artificial Intelligence. 2015.

- Zoran, Daniel, Balaji Lakshminarayanan, and Charles Blundell. "Learning Deep Nearest Neighbor Representations Using Differentiable Boundary Trees". In: arXiv preprint arXiv:1702.08833 (2017).
- Van Durme, Benjamin and Ashwin Lall. "Online Generation of Locality Sensitive Hash Signatures". In: ACL Conf. Short Papers. 2010.

Gionis, Aristides, P. Indyk, and R. Motwani. "Similarity search in high dimensions via hashing". In: *Vldb.* 1999.

Appendix

Neighbor-based classification

Exact nearest neighbors:

- k-nearest neighbors
- Computational complexity: $\mathcal{O}(ND)$
- Logistic regression: O(1)
- $\mathcal{O}(\cdot)$ is the big O notation for computational complexity.

Neighbor-based classification

Exact nearest neighbors:

- k-nearest neighbors
- Computational complexity: $\mathcal{O}(ND)$
- Logistic regression: $\mathcal{O}(1)$
- $\mathcal{O}(\cdot)$ is the big O notation for computational complexity.

Approximate nearest neighbors (ANNs):

- ► Tree-based: Organize data in a tree structure.
- ▶ Hashing-based: Computes low dimensional hash values.
- Computational complexity: Sub-linear

Locality-sensitive hashing⁴

Figure: Intuition behind locality sensitive hashing³.

³Van Durme and Lall, "Online Generation of Locality Sensitive Hash Signatures".

 $^{^4\}text{Aristides Gionis, P. Indyk, and R. Motwani. "Similarity search in high dimensions via hashing". In: Vldb. 1999.$

Locality-sensitive hashing⁴

Figure: Intuition behind locality sensitive hashing³.

³Van Durme and Lall, "Online Generation of Locality Sensitive Hash Signatures".

 $^{^{4}}$ Aristides Gionis, P. Indyk, and R. Motwani. "Similarity search in high dimensions via hashing". In: *Vldb.* 1999.

Locality-sensitive hashing⁴

Figure: Intuition behind locality sensitive hashing³.

³Van Durme and Lall, "Online Generation of Locality Sensitive Hash Signatures".

⁴Aristides Gionis, P. Indyk, and R. Motwani. "Similarity search in high dimensions via hashing". In: *Vldb.* 1999.

Locality-sensitive hashing⁴

Figure: Intuition behind locality sensitive hashing³.

³Van Durme and Lall, "Online Generation of Locality Sensitive Hash Signatures".

⁴Aristides Gionis, P. Indyk, and R. Motwani. "Similarity search in high dimensions via hashing". In: *Vldb.* 1999.

Building and querying a BT

Local neighborhood: A node and its children.

Querying BT for the ANN of x:
1. Traverse BT, searching for ANN in local neighborhoods.

Training BT with a new data point x:

- 1. Traverse BT, searching for ANN in local neighborhoods.
- 2. Add as a child **only** if the ANN is of a different class.

(Hence 'Boundary tree')

Figure: A BT with 2-d data belonging to 2 classes. New data point x shown in blue.

Probabilistic model for DBT traversal

- ▶ $(\mathbf{x}_r, y_r) \in \mathcal{D}$: training point
- p(i): parent node index of node-i
- $\mathcal{W}(i)$: index set of siblings of node-*i*
- V: indexes in traversal path
- s: index of final node

$$\log \Pr^*(y_r = c | \mathbf{x}_r) = \left[\sum_{i \in \mathcal{V} \setminus s} \log \Pr(\mathsf{p}(i) \to i | r) \right] \\ + \log \left[\sum_{i \in \mathcal{W}(s) \cup \{s\}} \Pr(\mathsf{p}(i) \to i | r) \mathbb{1}[y_i = c] \right]$$

Gradient descent with DBTs

Unnormalized log soft-probabilities

$$\log \Pr^*(y_r = c | \mathbf{x}_r) = \left[\sum_{i \in \mathcal{V} \setminus s} \log \Pr(\mathsf{p}(i) \to i | r) \right] \\ + \log \left[\sum_{i \in \mathcal{W}(s) \cup \{s\}} \Pr(\mathsf{p}(i) \to i | r) \mathbb{1}[y_i = c] \right]$$

Normalized soft-probabilities

$$\Pr(y_r = c | \mathbf{x}_r) = \frac{\Pr^*(y_r = c | \mathbf{x}_r)}{\sum_{c' \in [C]} \Pr^*(y_r = c' | \mathbf{x}_r)}$$

Cross entropy loss

$$\mathcal{L}_{\mathsf{dbt}} = -\sum_{c \in [C]} \mathbb{1}[y_r = c] \log \Pr(y_r = c | \mathbf{x}_r)$$

Minimize L_{dbt} with BT fixed ↔ Re-build BT with θ fixed.
Use final DBT classifier at the test time.

Effectiveness of using the points near boundary

Figure: New training data point \bigotimes , and existing data points in the BS.

Implementing $f_{\theta}(\cdot)$ with neural networks

Feed-forward neural network comprising of L-layers.

- ▶ **x**⁽⁰⁾: input vector
- $W^{(l)}$ and $\mathbf{b}^{(l)}$ are learnable variables
- $\Phi^{(l)}$: activation function of *l*-th layer
- ▶ *l*-th layer output (1 ≤ *l* ≤ *L*), $\mathbf{x}^{(l)} = \Phi^{(l)}(W^{(l)}\mathbf{x}^{(l-1)} + \mathbf{b}^{(l)})$

• Parameter set
$$heta = \{W^{(l)}, \mathbf{b}^{(l)}\}_{1 \leq l \leq L}$$

- $f_{\theta}(\cdot): \mathbb{R}^{D} \to \mathbb{R}^{m}$ is implemented with
 - $\Phi^{(L)}$ as the *identity* function.
 - $\Phi^{(l)} = \operatorname{relu}(\cdot) = \max(0, \cdot) \text{ for } 1 \le l < L.$

DBS algorithm

Algorithm 1: DBS training algorithm

input: $\mathcal{D}, N_{\rm b}, \sigma$ randomly initialize θ , parameters of $f_{\theta}(\cdot)$; while not reached maximum number of epochs do shuffle elements and partition \mathcal{D} to obtain subsets of size $(N_{b} + 1)$; foreach subset $\overline{\mathcal{D}}$ do $\mathcal{U} \leftarrow \{ (f_{\theta}(\mathbf{x}_n), y_n) \mid (\mathbf{x}_n, y_n) \in \bar{\mathcal{D}} \};$ $\mathcal{U}_{b} \leftarrow \text{first } N_{b} \text{ elements of } \mathcal{U};$ $\mathcal{S} \leftarrow$ boundary set computed using elements of \mathcal{U}_{b} ; $(f_{\theta}(\mathbf{x}_r), y_r) \leftarrow \text{last element of } \mathcal{U};$ $\mathbf{d} \leftarrow \mathsf{row} \; \mathsf{vector} \; \mathsf{consisting} \; \mathsf{Euclidean} \; \mathsf{distances} \; \mathsf{between} \; \mathsf{each} \; \mathsf{data}$ point in S and \mathbf{x}_r : $\mathbf{w} \leftarrow \text{softmax}$ function applied on $\frac{-\mathbf{d}}{\sigma}$ i.e., $\mathbf{w}(i) = rac{\exp(-\mathbf{d}(i)/\sigma)}{\sum \exp(-\mathbf{d}(j)/\sigma)}$ for $i \in [|\mathcal{S}|]$; $Y \leftarrow |\mathcal{S}| \times C$ matrix where rows are the one-hot label encodings of elements of S: $\hat{\mathbf{y}} \leftarrow \mathbf{w}Y$ where $\hat{\mathbf{y}}(c) = \Pr(y_r = c | \mathbf{x}_r, \mathcal{S}, \theta)$ for $c \in [C]$; $\mathcal{L}_{dbs} \leftarrow cross-entropy loss calculated with <math>\hat{\mathbf{y}}$ and y_r ; Compute $\nabla_{\theta} \mathcal{L}_{dbs}$ and take one step to minimize \mathcal{L}_{dbs} ; end

Model architecture of $f_{\theta}(\cdot)$

Differentiable boundary trees (DBT) and differentiable boundary sets (DBS)

•
$$f_{\theta}(\cdot): 784 \xrightarrow{\text{relu}} 400 \xrightarrow{\text{relu}} 400 \xrightarrow{\text{identity}} 20$$

In DBT, compute gradients by

- DBT-v1: only considering the new training data point.
- DBT-v2: considering new training data point and existing points in BT.

Comparison with vanilla neural network (VNet) classifier.

 $\blacktriangleright 784 \xrightarrow{\text{relu}} 400 \xrightarrow{\text{relu}} 400 \xrightarrow{\text{identity}} 20 \xrightarrow{\text{softmax}} 10$