Efficient learning of neighbor representations for boundary trees and forests

Tharindu Adikari, Stark C. Draper
Department of Electrical and Computer Engineering University of Toronto

CISS, 2019

Introduction

- In real world use cases non-quantitative factors are involved. black-box classifiers lack interepretability.

Introduction

- In real world use cases non-quantitative factors are involved. black-box classifiers lack interepretability.
- Neighbor-based classification:

Things that appear similar are likely similar.
Provides a natural reasoning for classifier decisions.

- Neighbor-based methods can justify the decision process. provide similar examples to a given query.

Approach

With neighbor-based a query is

- not constant-time like neural network classifier.
- linear in the size of training dataset in worst-case.

Figure: Use a cascade of neural network and a neighbor-based classifier.

Approach

With neighbor-based a query is

- not constant-time like neural network classifier.
- linear in the size of training dataset in worst-case.

Figure: Use a cascade of neural network and a neighbor-based classifier.

Approach

With neighbor-based a query is

- not constant-time like neural network classifier.
- linear in the size of training dataset in worst-case.

Figure: Use a cascade of neural network and a neighbor-based classifier.

Notation:

- $[K]=\{1, \ldots, K\}$ for any positive integer K.
- $\mathcal{D}=\left\{\left(\mathbf{x}_{n}, y_{n}\right) \mid \mathbf{x}_{n} \in \mathbb{R}^{D}, y_{n} \in[C], n \in[N]\right\}$ is a given dataset.

Boundary tree (BT) algorithm ${ }^{1}$

Figure: A BT with data points belonging to 2 classes.

- First, BT is built using $\left(\mathbf{x}_{i}, y_{i}\right) \in \mathcal{D}$.
- Nodes represent $\left(\mathbf{x}_{i}, y_{i}\right)$ - data, label pairs.
- Offers approximate nearest neighbor search (ANN).

[^0]
Boundary tree (BT) algorithm ${ }^{1}$

Figure: A BT with data points belonging to 2 classes.

- First, BT is built using $\left(\mathbf{x}_{i}, y_{i}\right) \in \mathcal{D}$.
- Nodes represent $\left(\mathbf{x}_{i}, y_{i}\right)$ - data, label pairs.
- Offers approximate nearest neighbor search (ANN).
- Given \mathbf{x}, traverse BT searching for ANN in local neighborhoods.
- Local neighborhood: A node and its children.
- Use $\|\cdot\|_{2}$, the L_{2} norm to measure distances.

[^1]
Differentiable boundary trees ${ }^{2}$ (DBTs)

- Assert a neural network for $f_{\theta}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{m}$.
- Build a BT with $f_{\theta}(\cdot)$ transformed data.
- Nodes represent $\left(f_{\theta}\left(\mathbf{x}_{i}\right), y_{i}\right)$ data, label pairs.

[^2]
Differentiable boundary trees ${ }^{2}$ (DBTs)

- Assert a neural network for $f_{\theta}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{m}$.
- Build a BT with $f_{\theta}(\cdot)$ transformed data.
- Nodes represent $\left(f_{\theta}\left(\mathbf{x}_{i}\right), y_{i}\right)$ data, label pairs.

- Minimize training loss $\mathcal{L}_{\mathrm{dbt}}$ w.r.t. θ using gradient descent.
- Tree traversal is not a differentiable operation.
- (Minimize $\mathcal{L}_{\mathrm{dbt}}$ over θ with BT fixed) \longleftrightarrow (Re-build BT with θ fixed)

[^3]
Issues of DBT algorithm

(1) Only local neighborhood contributes to training.

Figure: Dark red point is the closest to a training point \mathbf{x}. DBT training only considers the points below blue curve. Others do not contribute to training.

Issues of DBT algorithm

(1) Only local neighborhood contributes to training.

Figure: Dark red point is the closest to a training point \mathbf{x}. DBT training only considers the points below blue curve. Others do not contribute to training.
(2) Batch-implementation of DBT algorithm is hard.

Modern software/hardware tools rely on batch-implementation.
Tree traversal cannot be implemented as a batch operation.

- Is using a tree in training (not in testing/deploying) necessary?

Size of BT is limited by number of training points.
Number of nodes in the tree is already small (typically <100).

Proposing Boundary Sets and Differentiable Boundary Sets

Boundary set (BS):

- Follow boundary tree algorithm.
- Accumulate data in a set, rather than a tree.

Differentiable boundary set (DBS):

- All data points in the set contribute in optimization.
- Efficient batch-implementation is possible with existing tools.

Experiments

In each dataset,

- 10 image categories.
- $28 \times 28=784$ pixel images.
- 60,000 training examples.
- 10,000 test examples.
0000000000
1111111111111
2222222222
3333333333
4444444444
5555555155
6666666666
7777777777
8888888888
9999999999

$f_{\theta}(\cdot)$ model architecture for DBT and DBS:
- $784 \xrightarrow{\text { relu }} 400 \xrightarrow{\text { relu }} 400 \xrightarrow{\text { identity }} 20$

Comparison with vanilla neural network (VNet) classifier.

- $784 \xrightarrow{\text { relu }} 400 \xrightarrow{\text { relu }} 400 \xrightarrow{\text { identity }} 20 \xrightarrow{\text { softmax }} 10$

DBS is much faster than DBT

Figure: Experimental results with Fashion-MNIST training data.
(a) Comparison of training time for DBT and DBS.
(b) Learning 2-d representations by setting output dimension of $f_{\theta}(\cdot)=2$.

Comparing test errors

Table: Test error comparison of DBT, DBS and VNet.

Model	Digit-MNIST		Fashion-MNIST	
	Test error \%	\# of nodes	Test error \%	\# of nodes
DBT	2.23	220	14.2	505
DBS	$\mathbf{1 . 5 2}$	$\mathbf{2 9}$	$\mathbf{1 0 . 3}$	$\mathbf{2 6}$
VNet	1.48	-	9.8	-

- \# of nodes: Number of data points stored in the BT.
- DBS is the best performing in neighbor-based category.

Conclusion and future work

Proposed an algorithm that

- learns representations efficiently for neighbor-based classification.
- improves the accuracy and data representability of DBT.
- is easy to implement on modern machine learning tools.

Open for exploration:

- An adaptive classifier without the need for re-training.
- Two-stage training process that preserves privacy.

Thank you.

Questions?

References

Mathy, Charles et al. "The Boundary Forest Algorithm for Online Supervised and Unsupervised Learning". In: AAAI Conf. Artificial Intelligence. 2015.
Roran, Daniel, Balaji Lakshminarayanan, and Charles Blundell. "Learning Deep Nearest Neighbor Representations Using Differentiable Boundary Trees". In: arXiv preprint arXiv:1702.08833 (2017).
Van Durme, Benjamin and Ashwin Lall. "Online Generation of Locality Sensitive Hash Signatures". In: ACL Conf. Short Papers. 2010.
(in Gionis, Aristides, P. Indyk, and R. Motwani. "Similarity search in high dimensions via hashing". In: V/db. 1999.

Appendix

Neighbor-based classification

Exact nearest neighbors:

- k-nearest neighbors
- Computational complexity: $\mathcal{O}(N D)$
- Logistic regression: $\mathcal{O}(1)$
$\mathcal{O}(\cdot)$ is the big O notation for computational complexity.

Neighbor-based classification

Exact nearest neighbors:

- k-nearest neighbors
- Computational complexity: $\mathcal{O}(N D)$
- Logistic regression: $\mathcal{O}(1)$
$\mathcal{O}(\cdot)$ is the big O notation for computational complexity.

Approximate nearest neighbors (ANNs):

- Tree-based: Organize data in a tree structure.
- Hashing-based: Computes low dimensional hash values.
- Computational complexity: Sub-linear

Hashing-based methods

Locality-sensitive hashing ${ }^{4}$

Figure: Intuition behind locality sensitive hashing ${ }^{3}$.

[^4]
Hashing-based methods

Locality-sensitive hashing ${ }^{4}$

Figure: Intuition behind locality sensitive hashing ${ }^{3}$.

[^5]
Hashing-based methods

Locality-sensitive hashing ${ }^{4}$

Figure: Intuition behind locality sensitive hashing ${ }^{3}$.

[^6]
Hashing-based methods

Locality-sensitive hashing ${ }^{4}$

Figure: Intuition behind locality sensitive hashing ${ }^{3}$.

[^7]
Building and querying a BT

- Local neighborhood: A node and its children.
- Querying BT for the ANN of \mathbf{x} :

1. Traverse BT, searching for ANN in local neighborhoods.

- Training BT with a new data point \mathbf{x} :

1. Traverse BT, searching for ANN in local neighborhoods.
2. Add as a child only if the ANN is of a different class.
(Hence 'Boundary tree')

Figure: A BT with 2-d data belonging to 2 classes. New data point \mathbf{x} shown in blue.

Probabilistic model for DBT traversal

- $\left(\mathbf{x}_{r}, y_{r}\right) \in \mathcal{D}$: training point
- $\mathrm{p}(i)$: parent node index of node- i
- $\mathcal{W}(i)$: index set of siblings of node- i
- \mathcal{V} : indexes in traversal path
- s : index of final node

$$
\begin{aligned}
\log \operatorname{Pr}^{*}\left(y_{r}=c \mid \mathbf{x}_{r}\right)= & {\left[\sum_{i \in \mathcal{V} \backslash s} \log \operatorname{Pr}(\mathrm{p}(i) \rightarrow i \mid r)\right] } \\
& +\log \left[\sum_{i \in \mathcal{W}(s) \cup\{s\}} \operatorname{Pr}(\mathrm{p}(i) \rightarrow i \mid r) \mathbb{1}\left[y_{i}=c\right]\right]
\end{aligned}
$$

Gradient descent with DBTs

- Unnormalized log soft-probabilities

$$
\begin{aligned}
\log \operatorname{Pr}^{*}\left(y_{r}=c \mid \mathbf{x}_{r}\right)= & {\left[\sum_{i \in \mathcal{V} \backslash s} \log \operatorname{Pr}(\mathrm{p}(i) \rightarrow i \mid r)\right] } \\
& +\log \left[\sum_{i \in \mathcal{W}(s) \cup\{s\}} \operatorname{Pr}(\mathrm{p}(i) \rightarrow i \mid r) \mathbb{1}\left[y_{i}=c\right]\right]
\end{aligned}
$$

- Normalized soft-probabilities

$$
\operatorname{Pr}\left(y_{r}=c \mid \mathbf{x}_{r}\right)=\frac{\operatorname{Pr}^{*}\left(y_{r}=c \mid \mathbf{x}_{r}\right)}{\sum_{c^{\prime} \in[C]} \operatorname{Pr}^{*}\left(y_{r}=c^{\prime} \mid \mathbf{x}_{r}\right)}
$$

- Cross entropy loss

$$
\mathcal{L}_{\mathrm{dbt}}=-\sum_{c \in[C]} \mathbb{1}\left[y_{r}=c\right] \log \operatorname{Pr}\left(y_{r}=c \mid \mathbf{x}_{r}\right)
$$

- Minimize $\mathcal{L}_{\mathrm{dbt}}$ with BT fixed \longleftrightarrow Re-build BT with θ fixed.
- Use final DBT classifier at the test time.

Effectiveness of using the points near boundary

Figure: New training data point \otimes, and existing data points in the BS.

Implementing $f_{\theta}(\cdot)$ with neural networks

Feed-forward neural network comprising of L-layers.

- $\mathbf{x}^{(0)}$: input vector
- $W^{(l)}$ and $\mathbf{b}^{(l)}$ are learnable variables
- $\Phi^{(l)}$: activation function of l-th layer
- l-th layer output $(1 \leq l \leq L), \mathbf{x}^{(l)}=\Phi^{(l)}\left(W^{(l)} \mathbf{x}^{(l-1)}+\mathbf{b}^{(l)}\right)$
- Parameter set $\theta=\left\{W^{(l)}, \mathbf{b}^{(l)}\right\}_{1 \leq l \leq L}$
$f_{\theta}(\cdot): \mathbb{R}^{D} \rightarrow \mathbb{R}^{m}$ is implemented with
- $\Phi^{(L)}$ as the identity function.
- $\Phi^{(l)}=\operatorname{relu}(\cdot)=\max (0, \cdot)$ for $1 \leq l<L$.

DBS algorithm

Algorithm 1: DBS training algorithm

input: $\mathcal{D}, N_{\mathrm{b}}, \sigma$
randomly initialize θ, parameters of $f_{\theta}(\cdot)$;
while not reached maximum number of epochs do
shuffle elements and partition \mathcal{D} to obtain subsets of size $\left(N_{\mathrm{b}}+1\right)$;
foreach subset $\overline{\mathcal{D}}$ do
$\mathcal{U} \leftarrow\left\{\left(f_{\theta}\left(\mathbf{x}_{n}\right), y_{n}\right) \mid\left(\mathbf{x}_{n}, y_{n}\right) \in \overline{\mathcal{D}}\right\} ;$
$\mathcal{U}_{\mathrm{b}} \leftarrow$ first N_{b} elements of \mathcal{U};
$\mathcal{S} \leftarrow$ boundary set computed using elements of \mathcal{U}_{b};
$\left(f_{\theta}\left(\mathbf{x}_{r}\right), y_{r}\right) \leftarrow$ last element of \mathcal{U};
$\mathbf{d} \leftarrow$ row vector consisting Euclidean distances between each data point in \mathcal{S} and \mathbf{x}_{r};
$\mathbf{w} \leftarrow$ softmax function applied on $\frac{-\mathbf{d}}{\sigma}$ i.e., $\mathbf{w}(i)=\frac{\exp (-\mathbf{d}(i) / \sigma)}{\sum_{j \in[|\mathcal{S}|]} \exp (-\mathbf{d}(j) / \sigma)}$ for $i \in[|\mathcal{S}|]$;
$Y \leftarrow|\mathcal{S}| \times C$ matrix where rows are the one-hot label encodings of elements of \mathcal{S};
$\hat{\mathbf{y}} \leftarrow \mathbf{w} Y$ where $\hat{\mathbf{y}}(c)=\operatorname{Pr}\left(y_{r}=c \mid \mathbf{x}_{r}, \mathcal{S}, \theta\right)$ for $c \in[C]$;
$\mathcal{L}_{\mathrm{dbs}} \leftarrow$ cross-entropy loss calculated with $\hat{\mathbf{y}}$ and y_{r};
Compute $\nabla_{\theta} \mathcal{L}_{\mathrm{dbs}}$ and take one step to minimize $\mathcal{L}_{\mathrm{dbs}}$;
end

Model architecture of $f_{\theta}(\cdot)$

Differentiable boundary trees (DBT) and differentiable boundary sets (DBS)

- $f_{\theta}(\cdot): 784 \xrightarrow{\text { relu }} 400 \xrightarrow{\text { relu }} 400 \xrightarrow{\text { identity }} 20$

In DBT, compute gradients by

- DBT-v1: only considering the new training data point.
- DBT-v2: considering new training data point and existing points in BT.

Comparison with vanilla neural network (VNet) classifier.

- $784 \xrightarrow{\text { relu }} 400 \xrightarrow{\text { relu }} 400 \xrightarrow{\text { identity }} 20 \xrightarrow{\text { softmax }} 10$

[^0]: ${ }^{1}$ Charles Mathy et al. "The Boundary Forest Algorithm for Online Supervised and Unsupervised Learning". In: AAAI Conf. Artificial Intelligence. 2015.

[^1]: ${ }^{1}$ Charles Mathy et al. "The Boundary Forest Algorithm for Online Supervised and Unsupervised Learning". In: AAAI Conf. Artificial Intelligence. 2015.

[^2]: ${ }^{2}$ Daniel Zoran, Balaji Lakshminarayanan, and Charles Blundell. "Learning Deep Nearest Neighbor Representations Using Differentiable Boundary Trees". In: arXiv preprint arXiv:1702.08833 (2017).

[^3]: ${ }^{2}$ Daniel Zoran, Balaji Lakshminarayanan, and Charles Blundell. "Learning Deep Nearest Neighbor Representations Using Differentiable Boundary Trees". In: arXiv preprint arXiv:1702.08833 (2017).

[^4]: ${ }^{3}$ Van Durme and Lall, "Online Generation of Locality Sensitive Hash Signatures".
 ${ }^{4}$ Aristides Gionis, P. Indyk, and R. Motwani. "Similarity search in high dimensions via hashing". In: VIdb. 1999.

[^5]: ${ }^{3}$ Van Durme and Lall, "Online Generation of Locality Sensitive Hash Signatures".
 ${ }^{4}$ Aristides Gionis, P. Indyk, and R. Motwani. "Similarity search in high dimensions via hashing". In: VIdb. 1999.

[^6]: ${ }^{3}$ Van Durme and Lall, "Online Generation of Locality Sensitive Hash Signatures".
 ${ }^{4}$ Aristides Gionis, P. Indyk, and R. Motwani. "Similarity search in high dimensions via hashing". In: VIdb. 1999.

[^7]: ${ }^{3}$ Van Durme and Lall, "Online Generation of Locality Sensitive Hash Signatures".
 ${ }^{4}$ Aristides Gionis, P. Indyk, and R. Motwani. "Similarity search in high dimensions via hashing". In: VIdb. 1999.

