Efficient learning of neighbor representations
for boundary trees and forests

Tharindu Adikari, Stark C. Draper

Department of Electrical and Computer Engineering
University of Toronto

CISS, 2019

Introduction

Patient data X
atien aa_’ f9

Y
(Symptoms) — Diagnosis

» In real world use cases
non-quantitative factors are involved.
black-box classifiers lack interepretability.

N

Introduction

Neighbor-based Yy

Patient data X fo(x) . -
0 |=———| Classifier — Diagnosis

(Symptoms) —

» In real world use cases
non-quantitative factors are involved.
black-box classifiers lack interepretability.

» Neighbor-based classification:
Things that appear similar are likely similar.

Provides a natural reasoning for classifier decisions.

» Neighbor-based methods can
justify the decision process.

provide similar examples to a given query.

N

Approach

With neighbor-based a query is
» not constant-time like neural network classifier.

» linear in the size of training dataset in worst-case.

Patient data X f fg(X) Neighbor-based| ¥ . .
(Symptoms) — 0 | m—| Classifier — Diagnosis

Figure: Use a cascade of neural network and a neighbor-based classifier.

Approach

With neighbor-based a query is
» not constant-time like neural network classifier.

» linear in the size of training dataset in worst-case.

Patient data X
| fo

y .
(Symptoms) —= Diagnosis

Figure: Use a cascade of neural network and a neighbor-based classifier.

Approach

With neighbor-based a query is
» not constant-time like neural network classifier.

» linear in the size of training dataset in worst-case.

Patient data X
| fo

y .
(Symptoms) —= Diagnosis

Figure: Use a cascade of neural network and a neighbor-based classifier.

Notation:
» [K]={1,..., K} for any positive integer K.
> D = {(Xn,Yn) | Xn € RP,y,, € [C],n € [N]} is a given dataset.

Boundary tree (BT) algorithm?

root

Figure: A BT with data points belonging to 2 classes.

» First, BT is built using (x;,y:) € D.
> Nodes represent (x;,y;) - data, label pairs.

» Offers approximate nearest neighbor search (ANN).

LCharles Mathy et al. “The Boundary Forest Algorithm for Online Supervised and Unsupervised
Learning”. In: AAAI Conf. Artificial Intelligence. 2015.

Boundary tree (BT) algorithm?

class 1 d

class 2

v

>
>

Figure: A BT with data points belonging to 2 classes.

First, BT is built using (x;,y;) € D.
Nodes represent (x;,y;) - data, label pairs.

Offers approximate nearest neighbor search (ANN).

Given x, traverse BT searching for ANN in local neighborhoods.
Local neighborhood: A node and its children.

Use ||-||2, the L2 norm to measure distances.

LCharles Mathy et al. “The Boundary Forest Algorithm for Online Supervised and Unsupervised
Learning”. In: AAAI Conf. Artificial Intelligence. 2015.

Differentiable boundary trees?> (DBTs)

> Assert a neural network for fp : RP — R™.
» Build a BT with fy(-) transformed data.
» Nodes represent (fo(x:),y:) data, label pairs.

root

Jo(x) Yy

2Daniel Zoran, Balaji Lakshminarayanan, and Charles Blundell. “Learning Deep Nearest
Neighbor Representations Using Differentiable Boundary Trees”. In: arXiv preprint
arXiv:1702.08833 (2017).

Differentiable boundary trees?> (DBTs)

> Assert a neural network for fp : RP — R™.
» Build a BT with fy(-) transformed data.
» Nodes represent (fo(x:),y:) data, label pairs.

root

x| fo Jo(x) Y

» Minimize training loss Lgpt w.r.t. 0 using gradient descent.
» Tree traversal is not a differentiable operation.
» (Minimize Lqpt over 0 with BT fixed) <— (Re-build BT with ¢ fixed)

2Daniel Zoran, Balaji Lakshminarayanan, and Charles Blundell. “Learning Deep Nearest
Neighbor Representations Using Differentiable Boundary Trees”. In: arXiv preprint
arXiv:1702.08833 (2017).

Issues of DBT algorithm

(1) Only local neighborhood contributes to training.

root

root

//\

™

Figure: Dark red point is the closest to a training point x. DBT training only
considers the points below blue curve. Others do not contribute to training.

6

23

Issues of DBT algorithm

(1) Only local neighborhood contributes to training.

root root

SN
™

Figure: Dark red point is the closest to a training point x. DBT training only
considers the points below blue curve. Others do not contribute to training.

(2) Batch-implementation of DBT algorithm is hard.
Modern software/hardware tools rely on batch-implementation.

Tree traversal cannot be implemented as a batch operation.

» |s using a tree in training (not in testing/deploying) necessary?
Size of BT is limited by number of training points.
Number of nodes in the tree is already small (typically < 100).

Proposing Boundary Sets and Differentiable Boundary Sets

Boundary set (BS):
» Follow boundary tree algorithm.

» Accumulate data in a set, rather than a tree.

X trainin,]
fo J 9

—

testing

Differentiable boundary set (DBS):
» All data points in the set contribute in optimization.

» Efficient batch-implementation is possible with existing tools.

Experiments

| h dataset 00006Q0009
n eac ataset, /111l Y1 /7171
» 10 image categories. 282222223
. 3}33233%333
> 28 x 28 = 784 pixel YAUgdar Y 44
images. F5859555+5795
.. bob6es0Cbbb
» 60,000 training examples. 2777%7977 7
» 10,000 test examples. ISR EEER)
79722799957

Digit-MNIST

fo(-) model architecture for DBT and DBS:

relu relu identity

> 784 — 400 — 400 —— 20

Comparison with vanilla neural network (VNet) classifier.

relu relu identity softmax

> 784 — 400 — 400 ——= 20 ——= 10

b= awn-\fi-’s=-l

Fashion-MNIST

8/23

DBS is much faster than DBT

40

—— DBT
—— DBS
35

w
S

Test erorr %
N
]

20

prarer
102 103 10*
Wall clock time in log scale

(@) (b)

Figure: Experimental results with Fashion-MNIST training data.

(a) Comparison of training time for DBT and DBS.

(b) Learning 2-d representations by setting output dimension of fy(:) = 2.

Comparing test errors

Table: Test error comparison of DBT, DBS and VNet.

Model Digit-MNIST Fashion-MNIST

Test error % # of nodes Test error % # of nodes
DBT 2.23 220 14.2 505
DBS 1.52 29 10.3 26
VNet 1.48 - 9.8 -

» # of nodes: Number of data points stored in the BT.
» DBS is the best performing in neighbor-based category.

Conclusion and future work

Proposed an algorithm that

> learns representations efficiently for neighbor-based classification.

» improves the accuracy and data representability of DBT.

» is easy to implement on modern machine learning tools.

Open for exploration:
> An adaptive classifier without the need for re-training.

» Two-stage training process that preserves privacy.

Thank you.

Questions?

References

B Mathy, Charles et al. “The Boundary Forest Algorithm for Online Supervised
and Unsupervised Learning”. In: AAAI Conf. Artificial Intelligence. 2015.

B Zoran, Daniel, Balaji Lakshminarayanan, and Charles Blundell. “Learning Deep
Nearest Neighbor Representations Using Differentiable Boundary Trees”. In:
arXiv preprint arXiv:1702.08833 (2017).

B Van Durme, Benjamin and Ashwin Lall. “Online Generation of Locality
Sensitive Hash Signatures”. In: ACL Conf. Short Papers. 2010.

B Gionis, Aristides, P. Indyk, and R. Motwani. “Similarity search in high
dimensions via hashing”. In: VIdb. 1999.

13/23

Appendix

14 /23

Neighbor-based classification

Exact nearest neighbors:
» k-nearest neighbors
» Computational complexity: O(ND)
> Logistic regression: O(1)

O(-) is the big O notation for computational complexity.

Neighbor-based classification

Exact nearest neighbors:
» k-nearest neighbors
» Computational complexity: O(ND)
> Logistic regression: O(1)
O(-) is the big O notation for computational complexity.

Approximate nearest neighbors (ANNs):

» Tree-based: Organize data in a tree structure.

» Hashing-based: Computes low dimensional hash values.

» Computational complexity: Sub-linear

Hashing-based methods

Locality-sensitive hashing®

_ *

Figure: Intuition behind locality sensitive hashing3.

3Van Durme and Lall, “Online Generation of Locality Sensitive Hash Signatures”.
*Aristides Gionis, P. Indyk, and R. Motwani. “Similarity search in high dimensions via hashing”.
In: Vidb. 1999.

/23

Hashing-based methods

Locality-sensitive hashing®

m t

Figure: Intuition behind locality sensitive hashing3.

3Van Durme and Lall, “Online Generation of Locality Sensitive Hash Signatures”.

*Aristides Gionis, P. Indyk, and R. Motwani. “Similarity search in high dimensions via hashing”.
In: Vidb. 1999.

16/

Hashing-based methods

Locality-sensitive hashing®

Figure: Intuition behind locality sensitive hashing3.

3Van Durme and Lall, “Online Generation of Locality Sensitive Hash Signatures”.

*Aristides Gionis, P. Indyk, and R. Motwani. “Similarity search in high dimensions via hashing”.
In: Vidb. 1999.

16 /23

Hashing-based methods

Locality-sensitive hashing®

Figure: Intuition behind locality sensitive hashing3.

3Van Durme and Lall, “Online Generation of Locality Sensitive Hash Signatures”.

*Aristides Gionis, P. Indyk, and R. Motwani. “Similarity search in high dimensions via hashing”.
In: Vidb. 1999.

16 /23

Building and querying a BT
» Local neighborhood: A node and its children.

» Querying BT for the ANN of x:
1. Traverse BT, searching for ANN in local neighborhoods.

» Training BT with a new data point x:
1. Traverse BT, searching for ANN in local neighborhoods.
2. Add as a child only if the ANN is of a different class.
(Hence ‘Boundary tree')

NN

Figure: A BT with 2-d data belonging to 2 classes. New data point x shown in blue.

Probabilistic model for DBT traversal

vyvyYvyVvyy

(Xr,yr) € D: training point

p(7): parent node index of node-i

W(i): index set of siblings of node-i

V: indexes in traversal path

s: index of final node

log Pr*(yr = c|x.) =

i€V \s

+ log

iEW(s)U{s}

transition'2”

v
; N\
\ transition 3

’

final node —|

neighborhood ', ﬁnal*l‘

=" ’éraining point

Z log Pr(p(i) — z|r):|

Pr(p(i) — ilr)1[y: = C]}

18 /23

Gradient descent with DBTs

» Unnormalized log soft-probabilities

Z log Pr(p(i) — z|r):|

1€V \s

log Pr*(y, = c|x,) =

+ log

> Pr(p(i) > i)y = C]]
iEW(s)U{s}
» Normalized soft-probabilities

Pr (y, = clx.)
ZC’E[C] Pr*(yr = c[xr)

Pr(y, = cfx) =

» Cross entropy loss
Lt = — Z 1[yr = c]log Pr(y- = c|x,)
ce[C]

» Minimize Lgpt with BT fixed +— Re-build BT with 6 fixed.
» Use final DBT classifier at the test time.

19/23

Effectiveness of using the points near boundary

Figure: New training data point (), and existing data points in the BS.

20/23

Implementing fp(-) with neural networks

Feed-forward neural network comprising of L-layers.
> x(: input vector
W® and b® are learnable variables
& activation function of i-th layer
I-th layer output (1 <1< L), x© = dO(WwOx=D 4 p®)

vyvyy

v

Parameter set = {W® bW},

fo(-) : R” — R™ is implemented with
> &) as the identity function.
> &0 = relu(-) = max(0,-) for 1 <1< L.

DBS algorithm

Algorithm 1: DBS training algorithm

input: D, Ny, 0

randomly initialize 6, parameters of fy(-);

while not reached maximum number of epochs do

shuffle elements and partition D to obtain subsets of size (N + 1);
foreach subset D do

end

end

U {(fo(xn),yn) | (xn,yn) € D};

Uy, + first Ny, elements of U;

S < boundary set computed using elements of Uy;

(fo(x+),yr) last element of U;

d < row vector consisting Euclidean distances between each data
point in S and x,;

w < softmax function applied on _Td i.e.,

N exp(—d(i)/o) : .
w(i) = s andie or i€ [ISIh
JEllS]
Y |S] x C matrix where rows are the one-hot label encodings of
elements of S;
y < wY where y(c) = Pr(y, = c|x., S, 0) for c € [C];
Ldbs <— cross-entropy loss calculated with y and y,;
Compute Vg Lgps and take one step to minimize Lgps;

Model architecture of fy(-)

Differentiable boundary trees (DBT) and differentiable boundary sets (DBS)

relu identity

> fo() 784 1 400 S 400 L 90

In DBT, compute gradients by
» DBT-vl: only considering the new training data point.

» DBT-v2: considering new training data point and existing points in BT.

Comparison with vanilla neural network (VNet) classifier.

relu relu identity softmax

» 784 — 400 — 400 —— 20 —— 10

	References
	Appendix

