Exploitation of temporal structure in momentum-SGD for gradient compression

Tharindu Adikari, Stark Draper

University of Toronto

ISTC - August 2021

Motivation: Data exchange volumes can be massive in modern AI workloads

Problem background:

- Large datasets / parameterized models
- Decentralize data, synchronize computation
- Multi-GPU / data centres / edge devices
- Limited communication bandwidth

Motivating example:

- BERT benchmark model
- 340 million parameters
- Optimize with distributed SGD
- 1.3GB per gradient (32-bit floating-point)

Extended paper of our work: Tharindu B. Adikari and Stark C. Draper. "Compressing gradients by exploiting temporal correlation in momentum-SGD". In: IEEE J. Select. Areas Inform. Theory 2.3 (2021). DOI: 10.1109/JSAIT.2021.3103494

Setup: We start with a standard model of distributed optimization, "SGD"

Master-worker

- Partition large dataset amongst n-workers
- Worker-i computes gⁱ_t from its data, a stochastic gradient
- Compute smoothed gradient $v_t^i = \beta v_{t-1}^i + (1 \beta)g_t^i$
- \blacktriangleright Send v_t^i to master and receive $\frac{1}{n}\sum_{i=1}^n v_t^i$ from master
- Workers update $w_{t+1} = w_t \eta_t \frac{1}{n} \sum_{i=1}^n v_t^i$
- $\beta = 0$: SGD (stochastic gradient descent)
- $\beta \neq 0$: "momentum"-SGD

Setup: We start with a standard model of distributed optimization, "SGD"

Master-worker

- Partition large dataset amongst n-workers
- \blacktriangleright Worker-i computes g_t^i from its data, a stochastic gradient
- Compute smoothed gradient $v_t^i = \beta v_{t-1}^i + (1 \beta)g_t^i$
- **>** Send v_t^i to master and receive $\frac{1}{n}\sum_{i=1}^n v_t^i$ from master
- \blacktriangleright Workers update $w_{t+1} = w_t \eta_t \frac{1}{n} \sum_{i=1}^n v_t^i$
- $\beta = 0$: SGD (stochastic gradient descent)
- $\beta \neq 0$: "momentum"-SGD

Compress v_t^i with $Q: \mathbb{R}^d \to \mathbb{R}^d$

- x: input to encoder
- Q(x): output of decoder
- Q(x) takes smaller # bits than x

• Iterate
$$w_{t+1} = w_t - \eta_t \frac{1}{n} \sum_{i=1}^n Q(v_t^i)$$

Examples for Q(x):
quantize components in x (e.g. "Scaled-sign")
sparsify vector x (e.g. "Top-K")

Gradient compression: We aim to exploit "temporal" dependencies across iterations

Basic problem:

- ▶ Goal: compress ..., $v_{t-2}^i, v_{t-1}^i, v_t^i$ in each iteration
- Q trades off bit-rate for fidelity, "lossy compression"
- If entries in v_tⁱ are related can exploit within-vector structure to further reduce the bit-rate. This is a type of spatial correlation, e.g., Gradiveq¹does this

Our target:

Design a compression scheme to exploit correlations across-vectors structure (vⁱ_{t-1} and vⁱ_t), i.e., temporal correlations

Our idea:

- Analogy: image (JPEG) vs video (MPEG)
- \blacktriangleright Updates between iterations may be correlated, i.e., between g_{t-1}^i and g_t^i
- Especially true when using momentum, $\beta \neq 0$

$$v_t^i = \frac{\beta v_{t-1}^i + (1 - \beta)g_t^i}{1 - \beta g_t^i}$$

$$w_{t+1} = w_t - \eta_t \frac{1}{n} \sum_{i=1}^n Q(v_t^i)$$

- \blacktriangleright In practice β is in range of 0.9 to 0.99
- Momentum: components of v_t^i change slowly

¹Mingchao Yu et al. "Gradiveq: Vector quantization for bandwidth-efficient gradient aggregation in distributed cnn training". In: Advances in Neural Inf. Proc. Sys. Montréal, 2018

Proposing our Q-diff (quantized-differential) algorithm

- ► $r_t^i = v_t^i = \beta v_{t-1}^i + (1 \beta) g_t^i$
- Quantize r_{t-1}^i and r_t^i with \mathcal{Q} to produce \hat{r}_{t-1}^i and \hat{r}_t^i
- $\blacktriangleright \ r^i_{t-1} \ \text{and} \ r^i_t \implies \text{continuous alphabet}, \ \ \hat{r}^i_{t-1} \ \text{and} \ \hat{r}^i_t \implies \text{finite alphabet}$
- $\blacktriangleright \text{ Implement a differential encoder in } \mathcal{E}$
- Encode \hat{r}_t^i conditioned on knowledge of \hat{r}_{t-1}^i
- In our experiments employ a Lloyd-Max quantizer for Q

Empirical evaluation of Q-diff: large savings vs. competing algorithms

Figure: λ : hyper-parameter in Q-diff that controls compression ratio. $\beta = 0.99$ for momentum.

Figure: λ : hyper-parameter in Q-diff that controls compression ratio. $\beta = 0.99$ for momentum.

Incorporate 'error-feedback' to improve convergence of the algorithm

- ▶ r_{t-1}^i and r_t^i are affected due to error-feedback path
- Differential encoding is no longer suitable for \hat{r}_{t-1}^i and \hat{r}_t^i
- Introduce the new algorithm Est-K that builds on top of Top-K
- ▶ Top-*K*: send only the largest *K* elements in the vector
- Role of P is to predict values in reconstruction vector rⁱ_t
- Useful prediction possible due to the temporal correlation that exists from one iteration to the next
- Smaller prediction error means easier to correct and reduces bit rate

Prediction in Est-K reduces the dynamic range of the error versus Top-K

- ▶ **Top-***K* (upper figure)
- ▶ Est-K (lower figure)
- Synthetic experiment with one worker
- Plot first coordinate in each vector v_t, r_t, r̂_t, e_t
- \blacktriangleright $v_t[1]$ changes slowly
- ▶ Master applies $\tilde{r}_t[1]$
- Top-K applies zero in most iterations
- Est-K applies an estimated value
- Est-K incurs a lower magnitude in e_t

Empirical evaluation of Est-K (EF closed)

Figure: Comparing the performance of Est-K with Top-K. All algorithms employ momentum with $\beta = 0.99$ parameter. Est-K and Top-K employ error-feedback. From top to bottom in legend the algorithms incur 0.0026, 0.0021, 0.0056, 0.0031, and 32 bits per component.

Summary and next steps

- ▶ We exploit extant temporal correlation in update vectors in compression.
- Easy to design an algorithm when error-feedback is not used (Q-diff).
- When error-feedback is used, we design an algorithm based on Top-K quantizer (Est-K).
- Our two algorithms outperforms algorithms that do not exploit temporal correlation.

- Note that we do not use very advanced temporal compression in proposed algorithms.
- Q-diff only implements a first order differential encoder (differences between the current and last iteration), and Est-K implements only a constant estimator (time average of momentum between two updates).
- More advanced predictors should perform even better.

Thank you.

Extended paper of our work: Tharindu B. Adikari and Stark C. Draper. "Compressing gradients by exploiting temporal correlation in momentum-SGD". In: IEEE J. Select. Areas Inform. Theory 2.3 (2021). DOI: 10.1109/JSATT.2021.3103494