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Motivation: Data exchange volumes can be massive in modern AI workloads

Problem background:

I Large datasets / parameterized models

I Decentralize data, synchronize computation

I Multi-GPU / data centres / edge devices

I Limited communication bandwidth

Motivating example:

I BERT benchmark model

I 340 million parameters

I Optimize with distributed SGD

I 1.3GB per gradient (32-bit floating-point)

Extended paper of our work: Tharindu B. Adikari and Stark C. Draper. “Compressing gradients by exploiting temporal correlation in
momentum-SGD”. In: IEEE J. Select. Areas Inform. Theory 2.3 (2021). doi: 10.1109/JSAIT.2021.3103494
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Setup: We start with a standard model of distributed optimization, “SGD”

Master-worker Decentralized-ring Decentralized-graph

I Partition large dataset amongst n-workers

I Worker-i computes git from its data, a stochastic
gradient

I Compute smoothed gradient vit = βvit−1 + (1− β)git
I Send vit to master and receive 1

n

∑n
i=1v

i
t from master

I Workers update wt+1 = wt − ηt 1
n

∑n
i=1v

i
t

I β = 0: SGD (stochastic gradient descent)

I β 6= 0: “momentum”-SGD

Compress vit with Q : Rd → Rd

I x: input to encoder

I Q(x): output of decoder

I Q(x) takes smaller # bits than x

I Iterate wt+1 = wt − ηt 1
n

∑n
i=1Q(vit)

Examples for Q(x):

I quantize components in x
(e.g. “Scaled-sign”)

I sparsify vector x (e.g. “Top-K”)
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Gradient compression: We aim to exploit “temporal” dependencies across iterations

Basic problem:

I Goal: compress . . . , vit−2, v
i
t−1, v

i
t in each

iteration

I Q trades off bit-rate for fidelity, “lossy
compression”

I If entries in vit are related can exploit
within-vector structure to further reduce the
bit-rate. This is a type of spatial correlation,
e.g., Gradiveq1does this

Our target:

I Design a compression scheme to exploit
correlations across-vectors structure (vit−1 and
vit), i.e., temporal correlations

Our idea:

I Analogy: image (JPEG) vs video (MPEG)

I Updates between iterations may be correlated,
i.e., between git−1 and git

I Especially true when using momentum, β 6= 0

vit = βvit−1 + (1− β)git

wt+1 = wt − ηt
1

n

n∑
i=1

Q(vit)

I In practice β is in range of 0.9 to 0.99

I Momentum: components of vit change slowly

1Mingchao Yu et al. “Gradiveq: Vector quantization for bandwidth-efficient gradient aggregation in distributed cnn training”. In: Advances in
Neural Inf. Proc. Sys. Montréal, 2018
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Proposing our Q-diff (quantized-differential) algorithm

vit
Q Erit r̂it

Worker-i Master

r̂it r̃it
110...1 D

z−1

git +

1− β

β +

+

I rit = vit = βvit−1 + (1− β)git
I Quantize rit−1 and rit with Q to produce r̂it−1 and r̂it
I rit−1 and rit =⇒ continuous alphabet, r̂it−1 and r̂it =⇒ finite alphabet

I Implement a differential encoder in E
I Encode r̂it conditioned on knowledge of r̂it−1

I In our experiments employ a Lloyd-Max quantizer for Q
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Empirical evaluation of Q-diff: large savings vs. competing algorithms
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Figure: λ: hyper-parameter in Q-diff that controls compression ratio. β = 0.99 for momentum.

5 / 10



Empirical evaluation of Q-diff: zoom in on “quantized Top-K” vs. our “Q-diff” alg
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Figure: λ: hyper-parameter in Q-diff that controls compression ratio. β = 0.99 for momentum.
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Incorporate ‘error-feedback’ to improve convergence of the algorithm

vit

z−1

+

ηt−1

ηt

Q Erit r̂it

Worker-i Master

P
r̃it

-

P
r̂it

+

r̃it
110...1 D

z−1

git +

eit

1− β

β +
+

+

I rit−1 and rit are affected due to error-feedback path

I Differential encoding is no longer suitable for r̂it−1 and r̂it
I Introduce the new algorithm Est-K that builds on top of Top-K

I Top-K: send only the largest K elements in the vector

I Role of P is to predict values in reconstruction vector rit
I Useful prediction possible due to the temporal correlation that exists from one iteration to the next

I Smaller prediction error means easier to correct and reduces bit rate
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Prediction in Est-K reduces the dynamic range of the error versus Top-K

I Top-K (upper figure)

I Est-K (lower figure)

I Synthetic experiment with
one worker

I Plot first coordinate in
each vector vt, rt, r̂t, et

I vt[1] changes slowly

I Master applies r̃t[1]

I Top-K applies zero in
most iterations

I Est-K applies an
estimated value

I Est-K incurs a lower
magnitude in et
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Empirical evaluation of Est-K (EF closed)
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Figure: Comparing the performance of Est-K with Top-K. All algorithms employ momentum with β = 0.99
parameter. Est-K and Top-K employ error-feedback. From top to bottom in legend the algorithms incur
0.0026, 0.0021, 0.0056, 0.0031, and 32 bits per component.
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Summary and next steps

I We exploit extant temporal correlation in update vectors in compression.

I Easy to design an algorithm when error-feedback is not used (Q-diff).

I When error-feedback is used, we design an algorithm based on Top-K quantizer (Est-K).

I Our two algorithms outperforms algorithms that do not exploit temporal correlation.

I Note that we do not use very advanced temporal compression in proposed algorithms.

I Q-diff only implements a first order differential encoder (differences between the current and last
iteration), and Est-K implements only a constant estimator (time average of momentum between
two updates).

I More advanced predictors should perform even better.

Thank you.

Extended paper of our work: Tharindu B. Adikari and Stark C. Draper. “Compressing gradients by exploiting temporal correlation in
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