
Straggler Exploitation in Distributed

Computing Systems with Task Grouping

Tharindu Adikari

University of Toronto

Joint work with Haider Al-Lawati,

Jason Lam, Zhenhua Hu, and Stark Draper

Allerton Conference

Fall 2023

🧿 Some nodes are SLOW (Stragglers).

🧿 Have to wait for the slowest node!

Setup: 3 tasks, 3 workers

Stragglers Lengthen Running Time

W1

W3

W2

Task 1

Task 3

Task 2

1

🧿 Some nodes are SLOW (Stragglers).

🧿 Have to wait for the slowest node!

Setup: 3 tasks, 3 workers

Stragglers Lengthen Running Time

W1

W3

W2

Task 1

Task 3

Task 2

Standard replication

W1

W3

W2

Task 3

Task 3

Task 3

🧿 Replicate Task 3 on W1 & W2.

🧿 Store the result of the first to finish.

When tasks
1 & 2 finish

1

Algorithms exist for incorporating other information to prioritize replication: LATE, Mantri, MCP, Dolly

Zaharia (2008, 2013), Ananthanarayanan (2010), Chen (2013), Xu (2013, 2014, 2015)

🧿 Compute until a time limit in Step 1.

🧿 Sync. with partial results in Step 2.

Step 1: Compute
equal workloads

Step 2: Communicate
to synchronize

Straggler Exploitation in SGD

2

W1

W2

W3

🧿 Compute until a time limit in Step 1.

🧿 Sync. with partial results in Step 2.

Step 1: Compute
equal workloads

Step 2: Communicate
to synchronize

Step 1: Compute
For only 10 seconds

Step 2: Communicate
Partial computations

🧿 Everybody’s work is taken into account!

🧿 Time for an iteration is LOWER!

Straggler Exploitation in SGD

Ferdinand et al. (2017), Reisizadeh et al. (2019), Al-Lawati et al. (2021)

2

W1

W2

W3

W1

W2

W3

Straggler Exploitation in SGD: Results

Al-Lawati et al. (2021)

Async-FMB : Equal workload approach
50% accuracy by 150 mins

Async-Timed : Time-limited approach
50% accuracy by 100 mins

Time limited approach is around 33% faster!

AlexNet training on ImageNet dataset,
3 workers, natural stragglers.

3

The higher the granularity of splitting,
the higher the chance of stopping at the time limit.

Straggler Exploitation with General Computations

4

🧿 Computations must be exact (unlike ‘stochastic’ gradient descent).

🧿 Hard to implement a time limit. >> Key Idea: Increase task granularity.

Straggler Exploitation with General Computations

4

🧿 Computations must be exact (unlike ‘stochastic’ gradient descent).

🧿 Hard to implement a time limit. >> Key Idea: Increase task granularity.

Straggler Exploitation with General Computations

🧿 Hard to split some tasks into sub tasks.

🧿 Second method resembles grouping of tasks.

🧿 Methodology summary:

1. Assign groups of tasks to workers.
2. Increase worker updates.
3. Skip completed tasks.

🧿 Computations must be exact (unlike ‘stochastic’ gradient descent).

🧿 Hard to implement a time limit. >> Key Idea: Increase task granularity.

4

Amazon EC2 Tests

5

32 workers, 50 GB word count workload.
392 files (tasks) of 128 MB each.

Implementation with YARN and HDFS.

Amazon EC2 Tests

Baseline: Group size = 1
 (standard replication).

Key observation: Time savings increase
 with the straggler severity.

32 workers, 50 GB word count workload.
392 files (tasks) of 128 MB each.

Implementation with YARN and HDFS.

5

Source of Time Savings

6

🧿 Grouping reduces overhead
 (whitespace between tasks).

🧿 How much savings is due to
 the reduction of overhead?

🧿 Conduct simulation-based
 experiments.

Source of Time Savings

🧿 Grouping reduces overhead
 (whitespace between tasks).

🧿 How much savings is due to
 the reduction of overhead?

🧿 Conduct simulation-based
 experiments.

6

Overhead Reduction vs. Straggler Exploitation

Key observation: Time savings even if

overhead=0, if stragglers are severe enough.

7

Conclusions and Next Steps

8

Talk summary:

🧿 Proposed an algorithm for exploiting work performed by straggling workers.

🧿 The key idea is to increase granularity of work assigned to workers.

Possible future work:

🧿 An analysis that characterizes the performance improvement using of the group size parameter.

🧿 A method for predicting the optimal group size for a given straggler profile/set of tasks.

Thank you! Questions?

References

1. M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica, “Improving MapReduce performance in heterogeneous environments,” in OSDI, Dec 2008.

2. G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu, B. Saha, and E. Harris, “Reining in the outliers in MapReduce clusters using Mantri,”

in OSDI, Oct 2010.

3. Q. Chen, C. Liu, and Z. Xiao, “Improving MapReduce performance using smart speculative execution strategy,” IEEE Trans. on Comp., vol. 63, no. 4, pp.

954–967, 2013.

4. H. Xu and W. C. Lau, “Resource optimization for speculative execution in a MapReduce cluster,” in IEEE Int. Conf. on Network Protocols. IEEE, 2013.

5. ——, “Speculative execution for a single job in a MapReduce system,” in IEEE Int. Conf. on Cloud Computing. IEEE, 2014, pp. 586–593.

6. ——, “Task-cloning algorithms in a MapReduce cluster with competitive performance bounds,” in IEEE Int. Conf. on Distributed Comp. Sys. IEEE, 2015,

pp. 339–348.

7. A. C. Zhou, T.-D. Phan, S. Ibrahim, and B. He, “Energy-efficient speculative execution using advanced reservation for heterogeneous clusters,” in Int. Conf.

on Parallel Processing, 2018, pp. 1–10.

8. G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective straggler mitigation: Attack of the clones,” in Symp. on Networked Sys. Design and

Implementation, 2013, pp. 185–198.

9. N. Ferdinand, H. Al-Lawati, S. Draper, and M. Nokleby, “Anytime minibatch: Exploiting stragglers in online distributed optimization,” in Int. Conf. Learning

Representations, New Orleans, May 2019.

10. H. Al-Lawati, T. B. Adikari, and S. C. Draper, “Asynchronous delayed optimization with time-varying minibatches,” IEEE J. Select. Areas Inform. Theory,

vol. 2, no. 2, pp. 784–801, 2021.

11. A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, Tree gradient coding,” in Proc. Int. Symp. Inform. Theory. IEEE, 2019, pp. 2808–2812.

	Slide 1: Straggler Exploitation in Distributed Computing Systems with Task Grouping
	Slide 2: Stragglers Lengthen Running Time
	Slide 3: Stragglers Lengthen Running Time
	Slide 4: Straggler Exploitation in SGD
	Slide 5: Straggler Exploitation in SGD
	Slide 6: Straggler Exploitation in SGD: Results
	Slide 7: Straggler Exploitation with General Computations
	Slide 8: Straggler Exploitation with General Computations
	Slide 9: Straggler Exploitation with General Computations
	Slide 10: Amazon EC2 Tests
	Slide 11: Amazon EC2 Tests
	Slide 12: Source of Time Savings
	Slide 13: Source of Time Savings
	Slide 14: Overhead Reduction vs. Straggler Exploitation
	Slide 15: Conclusions and Next Steps
	Slide 16: References

