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🧿 Some nodes are SLOW (Stragglers).

🧿 Have to wait for the slowest node!

Setup:  3 tasks, 3 workers

Stragglers Lengthen Running Time
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🧿 Replicate Task 3 on W1 & W2.

🧿 Store the result of the first to finish.

When tasks 
1 & 2 finish
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Algorithms exist for incorporating other information to prioritize replication: LATE, Mantri, MCP, Dolly

Zaharia (2008, 2013), Ananthanarayanan (2010), Chen (2013), Xu (2013, 2014, 2015)



🧿 Compute until a time limit in Step 1.

🧿 Sync. with partial results in Step 2.

Step 1: Compute
equal workloads

Step 2: Communicate
to synchronize

Straggler Exploitation in SGD
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🧿 Compute until a time limit in Step 1.

🧿 Sync. with partial results in Step 2.

Step 1: Compute
equal workloads

Step 2: Communicate
to synchronize

Step 1: Compute
For only 10 seconds

Step 2: Communicate
Partial computations

🧿 Everybody’s work is taken into account!

🧿 Time for an iteration is LOWER!

Straggler Exploitation in SGD

Ferdinand et al. (2017), Reisizadeh et al. (2019), Al-Lawati et al. (2021)
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Straggler Exploitation in SGD: Results

Al-Lawati et al. (2021)

Async-FMB  : Equal workload approach
50% accuracy by 150 mins

Async-Timed : Time-limited approach
50% accuracy by 100 mins

Time limited approach is around 33% faster!

AlexNet training on ImageNet dataset, 
3 workers, natural stragglers.
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The higher the granularity of splitting, 
the higher the chance of stopping at the time limit.



Straggler Exploitation with General Computations

4

🧿  Computations must be exact (unlike ‘stochastic’ gradient descent).

🧿  Hard to implement a time limit.  >>   Key Idea: Increase task granularity.



Straggler Exploitation with General Computations

4

🧿  Computations must be exact (unlike ‘stochastic’ gradient descent).

🧿  Hard to implement a time limit.  >>   Key Idea: Increase task granularity.



Straggler Exploitation with General Computations

🧿 Hard to split some tasks into sub tasks.

🧿 Second method resembles grouping of tasks.

🧿 Methodology summary:

1. Assign groups of tasks to workers.
2. Increase worker updates.
3. Skip completed tasks.

🧿  Computations must be exact (unlike ‘stochastic’ gradient descent).

🧿  Hard to implement a time limit.  >>   Key Idea: Increase task granularity.
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Amazon EC2 Tests
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32 workers, 50 GB word count workload.
392 files (tasks) of 128 MB each.

Implementation with YARN and HDFS.



Amazon EC2 Tests

Baseline:             Group size = 1 
          (standard replication).

Key observation: Time savings increase 
                     with the straggler severity.

32 workers, 50 GB word count workload.
392 files (tasks) of 128 MB each.

Implementation with YARN and HDFS.
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Source of Time Savings
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🧿 Grouping reduces overhead 
     (whitespace between tasks).

🧿 How much savings is due to 
     the reduction of overhead?

🧿 Conduct simulation-based      
  experiments.
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Overhead Reduction vs. Straggler Exploitation

Key observation: Time savings even if

overhead=0, if stragglers are severe enough.
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Conclusions and Next Steps
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Talk summary:

🧿 Proposed an algorithm for exploiting work performed by straggling workers. 

🧿 The key idea is to increase granularity of work assigned to workers. 

Possible future work:

🧿 An analysis that characterizes the performance improvement using of the group size parameter.

🧿 A method for predicting the optimal group size for a given straggler profile/set of tasks.

Thank you! Questions?
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