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Motivation

Some algorithms require distributed sum (or mean) computation.
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Two-terminal stochastic gradient descent (SGD).

Two terminals want to update
wt+1 = wt − ηt(g

i
t + gjt )/2.

(1) Need only git + gjt , no need to recover git
and gjt separately.

(2) git and gjt are correlated.

(3) Two terminals must recover identical sums
to (remain) synchronized.

Algorithms exist for extending to more than 2 terminals.
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E.g., Butterfly all-reduce.

Recursively apply the basic building block.

4 terminals take log 4 = 2 rounds for sum
computation.

Other examples: power iteration, k-means.
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Two-terminal source coding with “Common Sum Reconstruction” (CSR)

Problem setup:
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Two decoders each want to form two estimates
(Ẑn

1 and Ẑn
2 ) of the sum Zn = Xn

1 +Xn
2 .

Want Pr(Ẑn
1 ̸= Ẑn

2 ) to be small.

The decoders may use Xn
1 and Xn

2 as side information
at D1 and D2.

CSR-achievability:

A scalar triple (R1, R2, D) is CSR-achievable if there exists a coding scheme such that

E[d(Zn, Ẑn
1 )] ≤ D and E[d(Zn, Ẑn

2 )] ≤ D.

Pr(Ẑn
1 ̸= Ẑn

2 ) can be made arbitrarily small.

RCSR ⊂ R3 is the set of all CSR-achievable triples.
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Our contributions

Focus on binary/hamming case.

X1, X2 ∈ F2, and d(·, ·) is Hamming distortion.

X1 +X2 is modulo-two sum.

(X1, X2) is a doubly symmetric binary source (DSBS).

X2

0 1

X1
0

(1−p)
2

p
2

1 p
2

(1−p)
2

Joint distribution of a DSBS(p).

Develop two inner bounds to RCSR (achievability results).

Inner bound 1 – Based on Steinberg’s common reconstruction (CR) problem1.

Inner bound 2 – Based on the lossy version of Körner-Marton’s modulo-two sum (LKM) problem2.

Develop an outer bound to RCSR (a converse result).

Based on Wyner-Ziv’s source coding with side information problem3.

1Yossef Steinberg. “Coding and common reconstruction”. In: IEEE Trans. Inform. Theory 55.11 (2009), pp. 4995–5010
2Janos Körner and Katalin Marton. “How to encode the modulo-two sum of binary sources”. In: IEEE Trans. Inform. Theory 25.2 (1979),

pp. 219–221
3Aaron Wyner and Jacob Ziv. “The rate-distortion function for source coding with side information at the decoder”. In: IEEE Trans. Inform.

Theory 22.1 (1976), pp. 1–10
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Inner bound 1 – Based on Steinberg’s CR problem

Steinberg’s CR problem
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R

Similar setup to source coding with side information.
Want ψ(Xn) = X̂n w.h.p. in addition.

Achievable rate distortion region is known.

RCR(D) =

{
H(p ∗D)−H(D) if 0 ≤ D ≤ 1

2
.

0 if 1
2
≤ D.

.

Application to CSR problem
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Ẑn
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n
1 ) + X̂n

2 , Ẑn
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1 + ψ2(X
n
2 )

Employ two parallel Steinberg systems.

RA =

(R1, R2, D)

∣∣∣∣∣∣∣∣
0 ≤ D1, D2 ≤ 1

2
,

R1 ≥ RCR(D1),
R2 ≥ RCR(D2),
D ≥ D1 ∗D2

 ,

RB = {(R1, R2, D) | R1 ≥ 0, R2 ≥ 0, D ≥ p}.
Then, convex hull conv(RA ∪RB) ⊆ RCSR.
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Inner bound 2 – Based on Lossy Körner-Marton (LKM) problem

Lossy Körner-Marton problem
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D estimates the sum Zn = Xn + Y n as Ẑn.

Application of LKM to CSR problem
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Both D1 and D2 are identical LKM decoders.

A scalar triple (R1, R2, D) is LKM-achievable if there exists a coding scheme such that
E[d(Zn, Ẑn)] ≤ D.

RLKM ⊂ R3 is the set of all LKM-achievable triples. Note RLKM ⊆ RCSR.

Lossless version (D = 0): Tight bound is known (Körner and Marton 1979).

Lossy version (D > 0): Joint typicality-based encoding/decoding to obtain an inner bound4.

4Sung Hoon Lim et al. “Towards an Algebraic Network Information Theory: Distributed Lossy Computation of Linear
Functions”. In: Proc. Int. Symp. Inform. Theory. IEEE. 2019, pp. 1827–1831
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Ẑn

E1

E2

D

R1

R2

D estimates the sum Zn = Xn + Y n as Ẑn.
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Ẑn

E1

E2

D1

D2

R1

R2

Both D1 and D2 are identical LKM decoders.

A scalar triple (R1, R2, D) is LKM-achievable if there exists a coding scheme such that
E[d(Zn, Ẑn)] ≤ D.
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An achievability result for LKM problem

Claim:
All triples in {(R1, R2, D) | R1, R2 ≥ H(p ∗ q ∗ q)−H(q), D ≥ q ∗ q, 0 ≤ q ≤ 1

2
} are LKM-achievable.

Proof sketch:

U ∈ Fm×n
2 : parity check matrix of a ‘good’ linear source code with avg. distortion q.

V ∈ Fr×n
2 : parity check matrix of a ‘good’ linear channel code for BSC(p ∗ q ∗ q).

Xn

Y n

Q B(·)

Q B(·)

+ g Z̃n

Need Z̃ = Ẑ w.h.p.

Q(Xn) = X̂n

(AX̂n = 0m)

Q(Y n) = Ŷ n

(AŶ n = 0m)

BX̂ n
(r bits)

BŶ
n (r b

its)

BX̂n +BŶ n = BẐn

Can show that we only need r > H(p ∗ q ∗ q)−H(q).

Resulting average distortion E[d(Z, Ẑ)] ≤ q ∗ q. (Recall Z = X + Y , Ẑn = X̂n + Ŷ n.)
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Outer bound with Wyner-Ziv problem

Waive the common reconstruction (CR) constraint in CSR

CSR problem reduces to two source coding with side information (Wyner-Ziv) problems.

This relaxation yields an outer bound (a converse result).
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Ẑn
1 = Xn

1 + X̂n
2 (use Xn

1 as side info. to decode X̂n
2 ).

Ẑn
2 = X̂n

1 +Xn
2 (use Xn

2 as side info. to decode X̂n
1 ).

RWZ(D) = l.c.e(g(D)), the lower convex envelope of g(D) =

{
H(p ∗D)−H(D) if 0 ≤ D < p,

0 if p ≤ D.

RCSR ⊆ {(R1, R2, D) | R1, R2 ≥ RWZ(D), D ≥ 0}.
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Comparison of bounds

Special case R1 = R2:

(X1, X2) is a DSBS(p) with p = 0.4 (top) and p = 0.2 (bottom).

The straight portion of the solid lines (i.e., the large D portion) is
tangent to the corresponding non-solid lines. This results from
time-sharing with the zero-sum-rate point (p, 0).

The inner and outer bounds get tighter as p decreases.

Steinberg inner bound is better than LKM inner bound.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Su
m

 ra
te 

R 1
+

R 2

Prop. 1 - Steinberg inner bound
Prop. 2 - LKM inner bound
Prop. 3 - Wyner-Ziv outer bound

0.0 0.1 0.2 0.3 0.4 0.5
D

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Su
m

 ra
te 

R 1
+

R 2

15 / 18



Conclusion and next steps

Open for exploration:

Find a distribution for (X1, X2) where LKM inner bound outperforms Steinberg inner bound.

Improve inner bounds by correlating the quantization errors.
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Thank you!.
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