Two-terminal source coding with

 common sum reconstructionTharindu Adikari and Stark Draper

University of Toronto

ISIT
Espoo, Finland

28 June 2022

Motivation

Some algorithms require distributed sum (or mean) computation.
Two terminals want to update

$$
w_{t+1}=w_{t}-\eta_{t}\left(g_{t}^{i}+g_{t}^{j}\right) / 2
$$

(1) Need only $g_{t}^{i}+g_{t}^{j}$, no need to recover g_{t}^{i} and g_{t}^{j} separately.
(2) g_{t}^{i} and g_{t}^{j} are correlated.
(3) Two terminals must recover identical sums to (remain) synchronized.

Motivation

Some algorithms require distributed sum (or mean) computation.

Basic building block

Two-terminal stochastic gradient descent (SGD).

Two terminals want to update

$$
w_{t+1}=w_{t}-\eta_{t}\left(g_{t}^{i}+g_{t}^{j}\right) / 2
$$

(1) Need only $g_{t}^{i}+g_{t}^{j}$, no need to recover g_{t}^{i} and g_{t}^{j} separately.
(2) g_{t}^{i} and g_{t}^{j} are correlated.
(3) Two terminals must recover identical sums to (remain) synchronized.

Algorithms exist for extending to more than 2 terminals.

- E.g., Butterfly all-reduce.
- Recursively apply the basic building block.
- 4 terminals take $\log 4=2$ rounds for sum computation.
■ Other examples: power iteration, k-means.

Two-terminal source coding with "Common Sum Reconstruction" (CSR)

Problem setup:

- Two decoders each want to form two estimates (\hat{Z}_{1}^{n} and \hat{Z}_{2}^{n}) of the sum $Z^{n}=X_{1}^{n}+X_{2}^{n}$.
- Want $\operatorname{Pr}\left(\hat{Z}_{1}^{n} \neq \hat{Z}_{2}^{n}\right)$ to be small.
- The decoders may use X_{1}^{n} and X_{2}^{n} as side information at \mathcal{D}_{1} and \mathcal{D}_{2}.

Two-terminal source coding with "Common Sum Reconstruction" (CSR)

Problem setup:

- Two decoders each want to form two estimates (\hat{Z}_{1}^{n} and \hat{Z}_{2}^{n}) of the sum $Z^{n}=X_{1}^{n}+X_{2}^{n}$.
- Want $\operatorname{Pr}\left(\hat{Z}_{1}^{n} \neq \hat{Z}_{2}^{n}\right)$ to be small.
- The decoders may use X_{1}^{n} and X_{2}^{n} as side information at \mathcal{D}_{1} and \mathcal{D}_{2}.

CSR-achievability:

- A scalar triple $\left(R_{1}, R_{2}, D\right)$ is CSR-achievable if there exists a coding scheme such that
- $\mathbb{E}\left[d\left(Z^{n}, \hat{Z}_{1}^{n}\right)\right] \leq D$ and $\mathbb{E}\left[d\left(Z^{n}, \hat{Z}_{2}^{n}\right)\right] \leq D$.
- $\operatorname{Pr}\left(\hat{Z}_{1}^{n} \neq \hat{Z}_{2}^{n}\right)$ can be made arbitrarily small.
- $\mathcal{R}_{\mathrm{CSR}} \subset \mathbb{R}^{3}$ is the set of all CSR-achievable triples.

Our contributions

Focus on binary/hamming case.

- $X_{1}, X_{2} \in \mathbb{F}_{2}$, and $d(\cdot, \cdot)$ is Hamming distortion.
- $X_{1}+X_{2}$ is modulo-two sum.
- $\left(X_{1}, X_{2}\right)$ is a doubly symmetric binary source (DSBS).

Joint distribution of a $\operatorname{DSBS}(p)$.

Develop two inner bounds to $\mathcal{R} \operatorname{CSR}$ (achievability results).

- Inner bound 1 - Based on Steinberg's common reconstruction (CR) problem ${ }^{1}$.
- Inner bound 2 - Based on the lossy version of Körner-Marton's modulo-two sum (LKM) problem².

Develop an outer bound to $\mathcal{R}_{\text {CSR }}$ (a converse result).

- Based on Wyner-Ziv's source coding with side information problem ${ }^{3}$.

[^0]
Inner bound 1 - Based on Steinberg's CR problem

Steinberg's CR problem

- Similar setup to source coding with side information. Want $\psi\left(X^{n}\right)=\hat{X}^{n}$ w.h.p. in addition.
- Achievable rate distortion region is known.

$$
R_{\mathrm{CR}}(D)= \begin{cases}H(p * D)-H(D) & \text { if } 0 \leq D \leq \frac{1}{2} \\ 0 & \text { if } \frac{1}{2} \leq D .\end{cases}
$$

Inner bound 1 - Based on Steinberg's CR problem

Steinberg's CR problem

- Similar setup to source coding with side information. Want $\psi\left(X^{n}\right)=\hat{X}^{n}$ w.h.p. in addition.
- Achievable rate distortion region is known.

$$
R_{\mathrm{CR}}(D)= \begin{cases}H(p * D)-H(D) & \text { if } 0 \leq D \leq \frac{1}{2} \\ 0 & \text { if } \frac{1}{2} \leq D\end{cases}
$$

Application to CSR problem

■ Employ two parallel Steinberg systems.

$$
\begin{aligned}
& \mathcal{R}_{\mathrm{A}}=\left\{\begin{array}{l|l}
\left(R_{1}, R_{2}, D\right) & \begin{array}{l}
0 \leq D_{1}, D_{2} \leq \frac{1}{2} \\
R_{1} \geq R_{\mathrm{CR}}\left(D_{1}\right), \\
R_{2} \geq R_{\mathrm{CR}}\left(D_{2}\right) \\
D \geq D_{1} * D_{2}
\end{array}
\end{array}\right\} \\
& \mathcal{R}_{\mathrm{B}}=\left\{\left(R_{1}, R_{2}, D\right) \mid R_{1} \geq 0, R_{2} \geq 0, D \geq p\right\}
\end{aligned}
$$

■ Then, convex hull $\operatorname{conv}\left(\mathcal{R}_{\mathrm{A}} \cup \mathcal{R}_{\mathrm{B}}\right) \subseteq \mathcal{R}_{\mathrm{CSR}}$.

Inner bound 2 - Based on Lossy Körner-Marton (LKM) problem

Lossy Körner-Marton problem

\mathcal{D} estimates the sum $Z^{n}=X^{n}+Y^{n}$ as \hat{Z}^{n}.

Application of LKM to CSR problem

Both \mathcal{D}_{1} and \mathcal{D}_{2} are identical LKM decoders.

[^1]
Inner bound 2 - Based on Lossy Körner-Marton (LKM) problem

Lossy Körner-Marton problem

\mathcal{D} estimates the sum $Z^{n}=X^{n}+Y^{n}$ as \hat{Z}^{n}.

Application of LKM to CSR problem

Both \mathcal{D}_{1} and \mathcal{D}_{2} are identical LKM decoders.

- A scalar triple $\left(R_{1}, R_{2}, D\right)$ is LKM-achievable if there exists a coding scheme such that $\mathbb{E}\left[d\left(Z^{n}, \hat{Z}^{n}\right)\right] \leq D$.
- $\mathcal{R}_{\text {LKM }} \subset \mathbb{R}^{3}$ is the set of all LKM-achievable triples. Note $\mathcal{R}_{\text {LKM }} \subseteq \mathcal{R}_{\mathrm{CSR}}$.

■ Lossless version $(D=0)$: Tight bound is known (Körner and Marton 1979).
■ Lossy version $(D>0)$: Joint typicality-based encoding/decoding to obtain an inner bound ${ }^{4}$.

[^2]
An achievability result for LKM problem

Claim:

All triples in $\left\{\left(R_{1}, R_{2}, D\right) \mid R_{1}, R_{2} \geq H(p * q * q)-H(q), D \geq q * q, 0 \leq q \leq \frac{1}{2}\right\}$ are LKM-achievable.

Proof sketch:

■ $U \in \mathbb{F}_{2}^{m \times n}$: parity check matrix of a 'good' linear source code with avg. distortion q.
■ $V \in \mathbb{F}_{2}^{r \times n}$: parity check matrix of a 'good' linear channel code for $\operatorname{BSC}(p * q * q)$.

$$
\begin{aligned}
& X^{n} \rightarrow Q \underset{\left(A \hat{X}^{n}=\mathbf{o}^{m}\right)}{\substack{Q\left(X^{n}\right)=\hat{X}^{n} \\
B(\cdot)} \underbrace{\text { Bèn }} \text { (r bits) }} \\
& B \hat{X}^{n}+B \hat{Y}^{n}=B \hat{Z}^{n} \longrightarrow g \rightarrow \tilde{Z}^{n} \\
& Y^{n} \longrightarrow Q \underset{Q\left(Y^{n}\right)=\hat{Y}^{n}}{\left(A \hat{Y}^{n}=\mathbf{0}^{m}\right)} \rightarrow B(\cdot) \quad B Y^{n}(r \text { bits }) \\
& \text { Need } \tilde{Z}=\hat{Z} \text { w.h.p. }
\end{aligned}
$$

An achievability result for LKM problem

Claim:

All triples in $\left\{\left(R_{1}, R_{2}, D\right) \mid R_{1}, R_{2} \geq H(p * q * q)-H(q), D \geq q * q, 0 \leq q \leq \frac{1}{2}\right\}$ are LKM-achievable.

Proof sketch:

■ $U \in \mathbb{F}_{2}^{m \times n}$: parity check matrix of a 'good' linear source code with avg. distortion q.
■ $V \in \mathbb{F}_{2}^{r \times n}$: parity check matrix of a 'good' linear channel code for $\operatorname{BSC}(p * q * q)$.

- Can show that we only need $r>H(p * q * q)-H(q)$.

■ Resulting average distortion $\mathbb{E}[d(Z, \hat{Z})] \leq q * q$. (Recall $Z=X+Y, \hat{Z}^{n}=\hat{X}^{n}+\hat{Y}^{n}$.)

Outer bound with Wyner-Ziv problem

Waive the common reconstruction (CR) constraint in CSR

- CSR problem reduces to two source coding with side information (Wyner-Ziv) problems.
- This relaxation yields an outer bound (a converse result).

$$
\begin{aligned}
& \left.\hat{Z}_{1}^{n}=X_{1}^{n}+\hat{X}_{2}^{n} \text { (use } X_{1}^{n} \text { as side info. to decode } \hat{X}_{2}^{n}\right) . \\
& \hat{Z}_{2}^{n}=\hat{X}_{1}^{n}+X_{2}^{n}\left(\text { use } X_{2}^{n} \text { as side info, to decode } \hat{X}_{1}^{n}\right) .
\end{aligned}
$$

Outer bound with Wyner-Ziv problem

Waive the common reconstruction (CR) constraint in CSR

- CSR problem reduces to two source coding with side information (Wyner-Ziv) problems.
- This relaxation yields an outer bound (a converse result).

- $R_{\mathrm{WZ}}(D)=$ I.c.e $(g(D))$, the lower convex envelope of $g(D)= \begin{cases}H(p * D)-H(D) & \text { if } 0 \leq D<p, \\ 0 & \text { if } p \leq D .\end{cases}$
- $\mathcal{R}_{\mathrm{CSR}} \subseteq\left\{\left(R_{1}, R_{2}, D\right) \mid R_{1}, R_{2} \geq R_{\mathrm{WZ}}(D), D \geq 0\right\}$.

Comparison of bounds

Special case $R_{1}=R_{2}$:

- ($\left.X_{1}, X_{2}\right)$ is a $\operatorname{DSBS}(p)$ with $p=0.4$ (top) and $p=0.2$ (bottom).
- The straight portion of the solid lines (i.e., the large D portion) is tangent to the corresponding non-solid lines. This results from time-sharing with the zero-sum-rate point ($p, 0$).
- The inner and outer bounds get tighter as p decreases.
- Steinberg inner bound is better than LKM inner bound.

Conclusion and next steps

Open for exploration:

- Find a distribution for $\left(X_{1}, X_{2}\right)$ where LKM inner bound outperforms Steinberg inner bound.
- Improve inner bounds by correlating the quantization errors.

Conclusion and next steps

Open for exploration:

- Find a distribution for $\left(X_{1}, X_{2}\right)$ where LKM inner bound outperforms Steinberg inner bound.
- Improve inner bounds by correlating the quantization errors.

$$
\begin{aligned}
& \hat{Z}^{n}=\hat{X}^{n}+\hat{Y}^{n} \\
&=\left(X^{n}+W_{X}^{n}\right)+\left(Y^{n}+W_{Y}^{n}\right) \\
&=X^{n}+Y^{n}+\left(W_{X}^{n}+W_{Y}^{n}\right) . \\
& \text { correlate to cancel }
\end{aligned}
$$

$$
\begin{aligned}
\hat{Z}_{1}^{n} & =\psi_{1}\left(X_{1}^{n}\right)+\hat{X}_{2}^{n} \\
& =\hat{X}_{1}^{n}+\hat{X}_{2}^{n} \quad \text { (w.h.p) } \\
& =X_{1}^{n}+X_{2}^{n}+\left({ }_{\text {correlate to cancel }}^{W_{1}^{n}+W_{2}^{n}}\right) . \\
& \text { Thank you!. }
\end{aligned}
$$

[^0]: ${ }^{1}$ Yossef Steinberg. "Coding and common reconstruction". In: IEEE Trans. Inform. Theory 55.11 (2009), pp. 4995-5010
 ${ }^{2}$ Janos Körner and Katalin Marton. "How to encode the modulo-two sum of binary sources". In: IEEE Trans. Inform. Theory 25.2 (1979), pp. 219-221
 ${ }^{3}$ Aaron Wyner and Jacob Ziv. "The rate-distortion function for source coding with side information at the decoder". In: IEEE Trans. Inform. Theory 22.1 (1976), pp. 1-10

[^1]: ${ }^{4}$ Sung Hoon Lim et al. "Towards an Algebraic Network Information Theory: Distributed Lossy Computation of Linear Functions". In: Proc. Int. Symp. Inform. Theory. IEEE. 2019, pp. 1827-1831

[^2]: ${ }^{4}$ Sung Hoon Lim et al. "Towards an Algebraic Network Information Theory: Distributed Lossy Computation of Linear Functions". In: Proc. Int. Symp. Inform. Theory. IEEE. 2019, pp. 1827-1831

